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FOREWORD

Turbulent flow is the most common form of motion of fluids, gases and plasma.
Nevertheless, the essence of this phenomenon became clear, if only in its most
general aspects, only after the classical investigations of 0. Reynolds, and turbu-
lence was gradually perceived as a phenomenon inherent in nature and in various
engineering processes.

Turbulence theory still remains one of the most fundamental and least
developed problems of physical mechanics.

The ideas of L. Prandtl, K. Taylor and A. N. Kolmogorov regarding the
existence of certain internal scales of turbulence led to the development of semi-
empirical methods that are presently the only sound methods of extending the
empirical knowledge in this area beyond the immediate context of tl_ experimental
data.

Most difficulty is encountered in the treatment of wall turbulence, i.e., the
turbulent flow around a rigid body.

Two circumstances are paramount here: first, the significant structural
inhomogeneity of the flow and its time-averaged parameter fields, and second, the
existence of a flow region in the immediate vicinity of a rigid surface in which
molecular friction is unconditionally dominant.

The turbulent boundary layer, just as any other stable statistical system, has
some quite conservative properties; the significance of these properties in the
development of a theory and practical computing methods have been accorded too
little attention until recently.

The laws of wall turbulence in the immediate vicinity of a rigid body, but
outside the viscous region, are the most stable.

A change in conditions at the rigid surface exerts a significant influence on the
viscous portion of the flow, and a change in conditions in the undisturbed flow reacts
on the flow in the outer region of the turbulent boundary layer.

The circumstance that the dimensions of the viscous region diminish with
decreasing viscosity more rapidly than does the size of the total turbulent boundary
layer is also of much importance. In this connection it is necessary _o consider
some idealized turbulent flow with a degenerate viscous sublayer. It is noteworthy
that in this boundary layer the integral characteristics of the transfer of momen-
tum, heat and mass are determined by the properties of the conservative portion of
the turbulent core and their relative changes when acted upon by disturbing factors
(pressure gradient, compressibility, temperature non-uniformity, permeability of
the rigid surface, physico-chemical transformations, etc. ) do not depend on the
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empirical constants and are not linked to any special form of semi-empirical
theory.

This text treats the fundamental theory of the turbulent boundary layer with
vanishing viscosity and methods for its application in computing real flows. Also
considered are the limiting properties of the thermal boundary layer at an adiabatic
surface, the interaction of a submerged jet and a rigid body and certain other prob-
lems of thermal screens. Thus this monograph does not cover by any means all
questions of turbulent boundary layer theory, but primarily only the results obtained
in the main directions developed by the authors.

It is assumed that the reader is adequately equipped with the fundamentals of the
modern theory of the boundary layer and the theory of convective heat-mass transfer.

We are most indebted to our colleagues of the Institute of Thermophysics and to
the Air Transport Institute, Academy of Sciences, USSR, particularly to E. P.
Volchkov and B. P. Mironov, who took direct part in the development of these new
ideas and contributed directly to their development.

B. S. Petukhov and V. D. Vilenskiy are due thanks for their many valuable
comments and discussions.

The Authors
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PRINCIPAL NOTATION

x, y--coordinates directed downstream along the surface and along the surface
normal, respectively.

wy--projections of average velocity on the x- and y-axes.W X '

5--thickness of dynamic boundary layer.

ST--thickness of thermal boundary layer.

5D--thickness of diffusion boundary layer.

P--pressure.

p--density.

--shearing stress in the xz-plane.

v x, Vy, Vz--Components of the fluctuating component of the velocity.

8- fluctuating component of temperature.

Bx--magnetic field induction in the z-direction.

5*--displacement thickness.

5**--momentum loss thickness.

yl--thickness of viscous sublayer.

2______w
ci _ hr_ --coefficient of friction.

p--coefficient of dynamic viscosity.

v =_ �p--coefficient of kinematic viscosity.

_ --relative mass velocity through surface of body.

jy--Stream in direction of y-axis.

"'w _" _/'_---friction velocity.

_B

T _ V-_w --dimensionless velocity.
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a--velocity of sound.

"_= _°w .--dimensionless coordinate.
'o

, Y --dimensionless distances from wall.

lw _ /w 2
_ hWo ¢1o" poWo ¢t permeability parameters.

]w I

br= p- 7-S ; bo=
]w 1

PoWoStD "

Cfo--Coefficient of friction on a plane impermeable plate in a non-isothermal flow
(standard c onditions").

• --dimensionless shearing stress under conditions considered.

= _--dimensionless shearing stress under "standard conditions."
%,o

Re*': _Reynolds number formed in accordance with the momentum loss thickness.

,.- a d_. a°" dwo a" d_vo
I, _-o "-_-; I= _-, -_; I* = w-_-d--_--shap e parameters.

q--energy flux due to molecular and turbulent heat transfer.

qv--Volume density of all energy sources.

i--specific enthalpy.

T--temperature.

_,--coefficient of heat conductivity.

C --specific heat at constant pressure.
P

i*--stagnation enthalpy.

i_ --total enthalpy.

c.--concentration by weight of i-th component.
1

0
i.--heat production of i-th component.

1
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I_ _ --_--Prandtl number.

1_1 = Cp _--turbulent Prandtl number.

bt-- _° --Mach number.

m_--dimensionless velocity.

1w'*--equilibrium enthalpy at wall.

T --equilibrium temperature at wall.
W

r--recovery coefficient.

$¢ -- _---Schmidt number.

So, m _--turbulent Schmidt number.

(-y_-o)--enthalpy (temperature)factor.

i'_o fr%o
_*o = io _ ro ]--adiabatic kinetic enthalpy (temperature) factor.

a_---_--4*--heat-transfer factor.

_" -T:-|--r--j--kinetic enthalpy (temperature)factor.

e--non-similarity factor of velocity and enthalpy profiles.

5i_--energy-loss thickness.

Re**_ -- --Reynolds number formed from energy-loss thickness.

qc,_ generalized Stanton number.Stz =_ _o (iw -- i'w)

5**--masS-loss thickness.
D
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Sto = _w, (Cw-- c,) --Stanton diffusion number.

q ; ]'
q=_-w T,=/-_,--dimensionless energy and mass flows.

e*. ac*--heat- and diffusion-analogs of frictional velocity.
i

fl--coefficient accounting for the effects of density fluctuations on TT.

/Sto_ relative laws of friction, heat-transfer andW= (c-f_) Re-." 'l's = _St) a,"a "'i'D---- _S'D. j'R,"o- mas s-transfer.

O_ _0--dimensionless velocity, enthalpy and concentration in "standard" conditions.

• _. Ws_. Ya_--limiting relative laws of friction, heat- and mass-transfer.

a--degree of dissociation of gas.

.0
1 --heat of dissociation.

bcrit--critical injection parameter.

U = Wo/Wmax--ratio of velocity at outer edge of boundary layer to maximum velocity
w =

max

F--nozzle throat area.

Fcrit--area of critical nozzle section.

PeT* = ReT*Pr--Peclet number according to energy-loss thickness.

q(U)--flow-rate function.

6D--displacement thickness in Dorodnitsin variables.

• l--relative law of friction for laminar boundary layer.

G--gas fl0w rate.

a--non-uniformity factor of the velocity distribution over the tube cross section.

O--effectiveness of the gas screen.

A--roughness height.

c.*--eoncentration of i-th component at a _ven point of the boundary layer at an
l ideal wall.

x±±
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(Cco)w--Concentration of CO 2 at wall.

Main Subscripts

w--parameters at wall.

0--parameters at outer edge of boundary layer or "standard" conditions.

--parameters with Re --* oo.

crit--critical parameters.

1--parameters of substance introduced into the boundary layer at intersection with
the wall surface.

00--parameters with adiabatic stagnation of gas.

xiii



PART h BOUNDARY LAYER WITH VANISHING VISCOSITY

CHAPTER I

THE DYNAMIC BOUNDARY LAYER

1.1. Equations of Motion of the Plane Boundary Layer

When a fluid flows around a rigid surface a dynamic boundary layer is formed,

i. e., a region in which the velocity of the fluid varies from the wall velocity to a
velocity quite close to that of the undisturbed flow. If the dimensions of this region
are significantly greater than the molecular free path, the relative velocity of the

medium at the surface of the rigid body is, practically, zero.

The usual flow region in which the gas may be considered to be a continuous

medium "attached" to the surface in the flow, is described by the condition

M< 0,01 ) "-_. (i-l-i)

When separating out the dynamic boundary layer for y_6, the exact boundary
conditions are replaced by approximate conditions. Then

g----_, w,----_ ( 1--0 wo;

_-M), w.---_;

where e is a small quantity.

We refer to a boundary layer of finite thickness in this sense (Fig. 1.1).

As first shown by Prandtl, the conditions

OP dP O_w. O:-.=
_-_v' -_-_ o_, (1-1-2)

are satisfied in a plane boundary layer in the absence of significant transverse

forces (e. g. centrifugal forces).

In view of this the equation of motion is considerably simplified and takes the
form

dP o_ aw= am. _ ]yBz" (1-1-3)

With jyBz = O,

dP o_ d_z,. _.

d, _6_" _---'PW_'-"6_--"_'-PW_-6y--y" (1-1-4)

_Translator's Note: In Russian practice, the comma indicates a decimal point.

/9
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The equation of continuity retains its usual form, i.e., for a plane, steady flow
it is

d (pw.,)r):__Oyd(_,u)__ O. (i-i-5)

, _//..

a) b)

FIG. 1.1. Diagram of boundary layer at the surface
of a body; a) plane boundary layer; b) axi-symmetric

boundary layer.

These and all subsequent

equations, unless specifically

stated, refer to steady, mean
motion, that is, all quantities
appearing are averaged over

a period of time considerably
longer than the period of the
turbulent fluctuations, where,

for a conducting liquid, the
fluctuations in the electric and

magnetic quantities are neg-

lected in a first approxima-
tion.

In the laminar boundary layer

_oej

• ----_-_-y. (1-i-6)

and in the turbulent boundary layer

(1-1-7)

where

_ oevv,,8+ v.v_9
v.%

is a coefficient accounting for density fluctuations ascribable to temperature fluctua-

tions and fl is the temperature coefficient of volume expansion.

Outside the boundary layer (y>6) the frictional forces are almost absent, and for

a steady flow with B = 0
Z

dP doe. I_
-- _--- : p,m,-_'-. ,_-1-8)

1.2. Integral Momentum Relations

Term-by-term integration of the equation of motion of the plane boundary layer
(1-1-3) from 0 to 6, taking into account the equation of continuity and (1-1-7), reduces

to the so-called integral momentum relations (the Karman equation). If we assume

jyB z = const, over the boundary layer cross section for conducting fluids, then
dw, _ dP (I-2-I)

_w, _-- ----_ + lvs,;

/
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• ,, d_ "]"podx p,_,, e,=o_"
(1-2 -2)

Here

is the displacement thickness;

(1-2-3)

P,,--7 _-, dy

is the momentum loss thickness.

In dimensionless form

_*--8"/_ and_*'=_**/_. (1-2-4)

Integral characteristics such as 5* and 5"* have the remarkable property that an
increase in the upper limit of integration in the range y > 5 yields essentially no
change in their magni/udes. In experimental determinations with sufficiently accurate
measurements such "internal" linear characteristics of the boundary layer are prac-

tically insensitive to a further improvement in instrumental accuracy, while the
boundary layer thickness 5 is directly related to the choice of the quantity e.

Stated differently, we can write for the boundary layer

) T T I (1-2-5)

The quantity Jv in (1-2-2) represents the mass velocity through the rigid surface

considered. If this surface is impermeable (not porous, or if no physico-chemical

transformations take place in it), Jw = 0.

We introduce the following notation:

2_w . (1-2-6)C]_ 2'
P_Wo

a S

H -----a*--_-; (I-2-7)

_** dwo
I= _ --" (1-2-8)

_o d_ '

Re** -- p.cr.a'". (1-2- 9)

where p * is the characteristic viscosity, not dependent on x.

/z_A2



/

Then the integral momentum relation can be written as

d _e ss

d_ -{- ReL (l -{- H) f -- _w I_eL --_ ReL _. (1-2-10)

Here x = x/L is the relative longitudinal distance (L = characteristic length of

body) Jw = Jw/(PoWo ) is the relative mass velocity through the surface of the body;

Re L = PoWoL/P * is the Reynolds number set up for the characteristic length of the

body and the local flow velocity outside the boundary layer.

B
Z

For a flow without pressure or magnetic field gradients (f = 0, since dP/dx = 0,
= 0) we have

d Re"* cl

d Re. -- _w "-_T' (1-2-11)

where

Re== wox/vo, wo= const.

Thus the integral momentum relation interrelates the local coefficient of friction

cf, the local value of Reynolds number in the form Re** and the external flow param-

eters (wall permeability, pressure distribution along the flow, magnetic field inten-
sity, current density).

The quantities H and f are related to body shape and are hence called shape

factors. For a plane boundary layer of conducting fluid at an insulating wall

i_const =Jr (z), E,j = const,

and hence, after the appropriate conversions, we have

where

d3** r i d:r, I dp,

_0 J ?oZ'o_ 2 '

&

Jw J

.O

jy is the stream at the outer edge of the boundary layer.

(I-2-12)

Going over to the Reynolds number, we have

dRe*" .e B=l_
_-bReL(l+/O/+Re _H.--

ct h w2 ._

--] w ReL -_- ReL "E"

(1-2-13)

/l_A3



with
For an axi-symmetric boundary layer, a diagram of which is shown in Fig. 1.1,

6 << Rx, the integral momentum equation takes the form

da** • 8*" d% 8** dRR _ ¢f
(1-2-14)

or

ct
d (R,,d_Re") + ReLRd: (1 + H) -- ReLR_j' w = ReLR_ -2-" (1-2-15)

We assume

I

(1-2-16)

I

g"= (l--_)I+ _¢_
o

(1-2-17)

= R x is the radiuswhere _ P/Po is the relative density of the medium at a given point;

of curvature of the body in the diametral plane; fl is an angle (see Fig. 1.1).

In what follows, all considerations will relate basically to nonconducting fluids.

1.3. Turbulent Friction Near the Wall

On substituting the shearing stress from (1-1-7) into (1-1-4) we can write the

equation of motion of a plane boundary layer as

(1-3-1)

Here

(1-3-2)

is the local Reynolds number in the sense of L. G. Loitsyanskiy [58];

v=vv

;z'=:--. ( _. ,_,
t v o_,)

(1-3-3)

is the characteristic of the intensity of the turbulent fluctuations in the sense of

L. Prandtl.
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At a rigid impermeable wall v = 0, and hence we have the conditions
Y

g_O, v_,%_O, "._ :w .--=__. k oy Jw
(1-3-4)

where _i is the shearing stress due to molecular viscosity.

This region is called the viscous sublayer of the turbulent boundary layer. We
denote its nominal thickness as Yl, and the velocity at its edge as w i. With large
enough Reynolds numbers, Yl << 5.

In the region y > y, the role of molecular friction reduces to the dissipation of the
flow of mechanical energy from large-scale turbulence fluctuations into small-scale

fluctuations, and turbulent friction is essentially independent of the molecular vis-
cosity of the medium. From this it follows that the quantity × in the outer periphery
of the viscous sublayer does not depend materially on Re or on the conditions at the
outer edge of the turbulent boundary layer:

yt<y<<5, X_x=const. (1-3-5)

Accordingly, the law of turbulent friction near a rigid wall, but outside the vis-
cous sublayer, is defined by the Prandtl formula*

(1-3-6)

As will be shown later, formula (1-3-6) is of fundamental importance in the theory
of the turbulent boundary layer with vanishing molecular viscosity.

In the immediate vicinity of the wall, i.e., within the viscous sublayer, the tur-
bulent fluctuations are strongly damped by molecular friction and their magnitude is
directly related to Re.

1.4. Logarithmic Velocity Profile

Consider a plane, turbulent boundary layer of an incompressible fluid with f = 0.
Then, in the region Yt < Y << 5, with good accuracy

f _w. )m•= i,= % = p\.y-_- (I-4-i)

and accordingly

(1-4-2)

6

*Strictly speaking this formula has the form

,,= p(xy), T I



This velocity distribution law was first defined by Prandtl and Nikuradze. Its
universal form is

1
(1-4-3)

I
where v=-o.-_ is the dimensionless velocity; c. =-T,---_lnw1 is some constant;

=- V*wy/_ is the dimensionless distance from the wall; _l and 7/1 are the values of
these parameters at the boundary of the viscous sublayer.

The quantities ¢1 and _l correspond to the common intersection of the logarithmic
velocity profile in the turbulent core of the boundary layer and the linear velocity
distribution in the viscous sublayer

¢ = _. (1-4-4)

This arrangement of the turbulent boundary layer is called the "double layer",
and it suffices for solution of the friction problem.

JY

g,j

25

fP

75
#I_r

d g _ 68#0 z 2 4 68_7 "T 2 _ 6810_

FIG. 102. Influence of free stream turbulence

on the velocity profile in the turbulentboundary
layer.
Test data [258] : (}. ID,7O, @- low turbulence
(up to 1%); O. e, O-high turbulence (up to 10%).

Figure 1.2 shows experimental
data on the effect of external turbu-

lence on the velocity profile in the
turbulent boundary layer, with f = 0.
It can be seen clearly that the velocity
profile is significantly deformed in
the outer portion of the boundary
layer with high levels of turbulence in
the main flow ( y > 5). But near the
wall the logarithmic velocity distri-
bution is maintained.

The same picture is also observed
in the flow of an incompressible fluid
with f _ 0 (Fig. 1.3). However, in
this case T _ T near the wall and the

w

presence of the logarithmic section of
the velocity profile requires special
treatment.

According to the test data n -- 0.4*

and (in the two-layer scheme) 7h = 11.6.

With these coefficients the Prandtl-Nikuradze formula takes the form

9.._+_5 in ,I. (1-4-5)

* The theoretical value of this quantity is 0.395, as computed by M. A. Gol'shtik

and S. S. Kutateladge [22].
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FIG. 1.3. Effect of longitudinal pressure

gradient on the velocity profile in the
turbulent boundary layer. Experimental

points from data: o. e- Shubauer and

Klebanov [211]; D. II-Fage [137]; _. • -

Badley and Brebner [108]; _. @ -A. I.
Leont'ev, P. N. Romanenko, A. N. Oblivin

[66]. Curve 1--_ = _7; curve II--_ = 5.5
+ 2.5 lu 77.

1o 5. Quadratic Law of Friction in the
Core of a Turbulent Boundary

Layer

Formulas (1-4-1) and (1-4-5) re-

flect the basic regularity of the devel-
oped turbulent flow--the quadratic law
of friction. In this case the magnitude

of the friction depends only on a single

physical property of the medium--the
density. The unique relationship be-
tween turbulent friction and the field

of average flow velocities is the next

fundamental factor. Here the mag-

nitude of TT is definitively fixed by

the derivative _¢0x/ay in the region of

significant velocity changes.

This result is confirmed experi-

mentally by the fact of the existence

of a logarithmic section of the velocity
profile near a body in a flow of in-

compressible fluid.

But the inequality ] Ow,,/Ox I >> low,,
/0g I may also exist in the outer portion

of the boundary layer, for f _ 0, with _ _,/Og--*0, Ow,,/Ox-:-_,o/dx. Therefore,
for a plane turbulent boundary layer of incompressible fluid, we must have in the
general case

(i-5-i)

Keeping in mind (1-4-1), we can write

• _. (Ow./0_ • _1 ,

where _=y/'5 so that X---_ as _--+1.

If we introduce the parameter

(i-5-3)

then

p (l _- _'
e}y _'k

(1-5-4)

8



where

l = k " t). (1-5-5)

Expression (1-5-4) is known as the Prandtl-Taylor formula, and, as can be seen
from the above discussion, it is not related to any specific representation of the
mechanism of turbulent transfer. *

The quantity 1 can be considered to be some integral linear scale of turbulence
that retains the imprecise but traditional name of mixing path length.

In the vicinity of the viscous sublayer we have the law (1-3-6).

1.6. Shearing Stress Profile Approximations

We know that the distribution of shearing stress over the boundary layer cross
section depends weakly on the fluid flow state. Thus, for example, with a steady,
stable flow of an incompressible fluid of constant properties in a duct of constant
cross section, the shearing stresses vary linearly over the duct width, independently
of the fluid flow state, i.e.

_-_-----_ = l -r-E, (1-6-1)
"w

where _ = y/h; h is the half-width, or radius, of the duct.

In the general case the distribution of shearing stresses over the cross section of
the boundary layer can be found from the equations of motion and continuity [18].

By integrating the equation of motion over the boundary layer section from 0 to y,
we find

d t" 2

-- m_ pm_dy -_ Pw_y ww_ -- PoWo_ y.
Q

q-_-2)

For standard conditions ( p= const, Jw = 0, dWo/dX = 0) we have from Eq. (1-6-2)"

Y y

-
O

(1-6-3)

/1__9

* Prandtl derived this formula from the somewhat inexact analogy between the
transfer of certain "turbulent blobs" of fluid and the motion of gas molecules.
Taylor proceeded from the more tenable hypothesis of the transfer of vorticity.



Going over to dimensionless form, we have

where _ = y/_.

For a self-similar flow ¢o = f(0, and then, taking into account the fact that
I

¢I* d8 r _,

7_--=a'i-" _ ® _L-- ®)
d_, we can write

L

-7,= )

Accordingly, in the general case, we have from (1-6-2):

where

• Z, + b,Z. --}-
%

t |

o

(1-6-4)

(1-6-5)

(1-6-6)

/2_20

or

-_ =?. -]- b,?, + Ag., (1-6-7)

where

Z, Z, Z.
_,="_-,. ' _.=-z;7,. ' _,= z,--F;

a dP 2lA=
_w d_ _ --_-_ "

Thus, for the general case with self-similar flow, the functions _l, q°2 and q_
depend on the coordinate _, and on the velocity and density distributions in the boundary
layer.

10
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For more practical cases, a power-law approximation of the shearing stress
distribution over the boundary layer cross section yields satisfactory results.

From the definition of a dynamic boundary layer of finite thickness we have the
condition

_-- 0, _-- 1; _-- 1, _-- 0. (1-6-8)

Very close to the wall w,---_ and the equation of motion can be written as

(1-6-9)

Integrating (1-6-9) with the condition pCOy= Jw' we find

dPI. __ jwW,. (1-6-10)

With _ wx----,-Wo, aw,,lay-.--_o, and taking (1-1-4) into account, we can write
0T/0y---_. From this the set of conditions follow

|--.. O, _',_ 1 + AF.+ b,®; "_

t-.l. --0. (1-6-11)

Here

a dP 2I .
•A-_.t w dz c_** ' (1-6-12)

b,= --. (1-6-13)
cf

The first of these represents a certain modification of the shape parameter (aero-
dynamic body curvature parameter).

The second quantity describes the effect of supply or loss of matter through the
surface of the body. We shall refer to this quantity as the wall permeability param-
eter.

In what follows we shall treat some additional modifications of the shape- and
permeability parameters.

Conditions (1-6-1) are satisfied by a cubic parabola

"_--_ !--_ _+ _'+ (At + b,®) (1 --_' (1-6-14)

or

7=,. (l + +b,,. 2' (1-6-15)

11



where

_e =.I -- 3_' Jc 2_,'. (1-6-16)

The quantity TO represents the distribution of shearing stress over the thickness

of the boundary layer at a smooth impermeable plate in the absence of a pressure
gradient.

The quantity w = Wx/W ° represents the dimensionless longitudinal velocity com-
ponent.

J

FIG. 1.4. Comparison of formulas

(1-6-15) with test data.

Curves calculated from (1-6-15) {for 2,

=0)" 1--T ° =1+342 +243; 2--_=_o

(1 + b I w). Points--tests by Mickley and
others [180] and the treatment of Leadon

[169]: O-Tw =0.003;b =1.3; _I, =0.455,

• --Jw = 0; values of co are experimental

values.

It follows from (1-6-14) that the
maximum shearing stress is found at a
distance from the wall of

2A+3 |/ (2A -+-3 _' A
=2_----_ 2 p, _3A --{--2 J 3A -I'-6"

(1-6-17)

in the boundary layer at an impermeable
surface, with A>0.

As A---,oo, _=---.I/s , i.e. with dif-

fusor flow (dP/dx>O), the maximum
shearing stresses in the boundary layer

at an impermeable surface lie in the

range 0<_<1/3 .

Figure 1-4 gives a comparison of
formula (1-6-15) with the test data. It

can be seen clearly that this approxima-

tion yields not only a qualitatively correct
representation of the function _, but also

agrees with the quantitative results, par-
ticularly in the most effective wall region
of the boundary layer, where we can

take 1/(1 +2_) _ 1.

/2_ 3

1.7. Separation and Displacement of the Boundary Layer

In a convergent flow (dP/dx<O) the stream is accelerated, the direction of motion of
the fluid coincides with the direction of action of the pressure forces and the boundary
layer at an impermeable surface is always stable in the sense that it does not separate
from the body.

In diverging flow (dP/dx>O) the stream is slowed down, the pressure increases and
its action is counter to the direction of motion of the fluid. Since the pressure gradient

remains the same over the entire cross section of the boundary layer, but the flow

12
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velocity is decreased toward the wall, the supply of kinetic energy of the flow inside the
boundary layer is insufficient completely to overcome the counteraction of the pressure
field. As a result the positive pressure gradient produces drag in the boundary layer,
and then stagnation and a return flow of fluid around the body. This phenomenon is
known as separation of the boundary layer.

Formally, separation is associated with the fact that with dP/dx>O the requirement

T > 0 near the rigid surface is also satisfied even when Tw = 0.

Since the flow reversal occurs in the region of greatest stagnation, i.e., in the
immediate vicinity of the wall, the point at which separation begins is defined by the
condition

(1-7-1)

Accordingly, cf = 0 at the separation point and friction at the wall disappears.

In reality, boundary layer separation of course does not take place at a point but
in some region.

With b t = 0 and cf = 0, we have from (1-6-10) with y---_

dP
• "_-_- y (1-7-2)

and in the viscous sublayer region

y-a dw,

m_ 2_, dx" (1-7-3)

Boundary layer displacement due to intense injection is possible with an imper-
meable surface in the flow. An interference pattern of the boundary layer in the state
of displacement from a permeable surface is shown in Fig. 1.5.

jjj j_jjj ji I lllllttl lliil;iii i' !illt' "
j j }, ,,t. g|"' l

In the Prandtl approximation
the equation of motion in a vis-
cous sublayer at a permeable
plate with dP/dx=O is in the form

O_ R

P-'_'y '_':w -F Jww_ (1-7-4)

FIG. 1.5. interferogram of a turbulent boundary
layer at an impermeable surface in the state of
displacement according to V. P. Motulevich [80].

Injection of CO 2 into air, w = 1.2 m/sec,
Jw = 0.17. o

and

m_e_P'm" [exp f iW___l ].

(1-7-5)

/2_A
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With Jw = 0 this formula yields a linear velocity distribution. At the displacement

point cf = 0, and with some finite critical injection a flow is produced in the viscous

sublayer that is slowed down in the x-direction, i oe., an effect somewhat similar to
"forced drought" in jet processes is created.

1.8. Velocity Profile Near an Impermeable Wall with Pressure Gradient

With b=O and y-._

dP
'_ "_' ":w -!- _ Y" (I-8-1)

A quadratic velocity distribution is equivalent to this distribution of shearing
stresses in the viscous sublayer:

?__ _____ _,, (1-8-2)

where

( 2 _312 I (1-8-3)
_=_Wj Re""

With _,<_<<1 thejoint solution of Eqs. (1-3-6) and (1-8-1)yieldsa velocity

profile

- +÷ (v,

,)
(1-8-4)

With _ the profile (1-8-4) approaches the profile (1-4_3), i.e., the logarithmic
section in Fig. 1-3, strictly speaking, exists both with small ? and with large Re**_

1.9. Velocity Profiles at a Plate and in a Tube with the Flow of an

Incompressible Fluid

From (1-5-4) we have for this case

t

,-,,= (1-9-1)

or

i

I : d _
(1-9-2)

/2__5

/2____6
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Hence, by virtue of the existence of the well-defined dependencies of]" and _ on _,
the velocity defect is defined by a function in the form o

or

_=I (¢) (1-9-3)

"=1 --V_I (E,. (1-9-4)

The function

I
l (})---_oInE (i-9-5)

corresponds to the law of turbulent friction (1-3-6).

Actually, the well-defined relationship between the velocity defect (w ° - Wx) and

distance along the normal to the wall in the form (1-9-3) is a fundamental property

of turbulent flow in ducts and at a plate. Figures 1.6 and 1.7 present the experimen-
tal data and computed results.

t$

to

%.

_5 tp tj 2,0

2 °tg{6_;

FIG. 1.6. Velocity distribution in the

turbulent boundary layer at a fiat plate.

1--computed from (1-9-3); II--curve drawn

through test points of reference [213]. Values

of Re x • 10-6: O--0.7; 0--I. 3; O--i. 9; _--

3.2; @--4.1; Q--5.0; _--6.8.

we obtain from (1-9-6):

If we resolve the function

7'/2 T-' into a power series in } in
the region of small }, we find

!

(1-9-6)

which follows directly from the

properties of the functions _0 (})

and l(}) considered above. From

(1-3-6) and (1-6-5) we get

¢-*0, i_,, x ]
7 I

(1-9-7)

Noting that

2 '_,/2
"_'t J --'--_'_=,. (1-9 -8)

I
"- -_- InZ, +h (E,), (1-9 -9)

/2_Z
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-_ where h--_, --_ a,['-'a_ is the
fl

/-_>--_ _- limiting value.

With dP/dx = O, _o1 = 7h, and
_ _ '" for the two-layer boundary layer

(see Section 1.4)

t_

FIG. 1.7. Universal logarithmic law for the
distribution of velocities in a smooth tube.

I--_0 = _ - laminar sublayer; H--buffer layer; III--
Eq. (1-10-2); IV, V--eq. (1-11-1) for n = 1/7 and
n = 1/10. Experimental data (Nikuradze), O--Re

= 4.1 x 103; •--2.3 x 104; G--1.1 x 105; 0--4.0
x 105; Q--I.1 × 106; Q--2.0 x 106; _--3.2 x 106;

a--Experimental data (Reichardt).

li .6_'* F_-7T,; (1-9-10)

Hence, with Re -* _ [, -_ 0. and,

by virtue of the boundedness of fl

In Re**.
X*

(1-9- 11)

1. i0. "Logarithmic" Boundary

Layer

It has been shown above that

the actual velocity distribution for
the flow of an incompressible fluid
in a tube differs little from loga-

rithmic. The deviation is more

significant in the boundary layer

at an impermeable plate. Nonetheless, in this case also the logarithmic velocity dis-
tribution satisfactorily describes the actual distribution up to w = 0.9. This circum-
stance allows the introduction of the concept of a model turbulent boundary layer with a

distribution law for the mixing path length:

(1-1o-1)

Such a boundary layer, with f = b = 0 and p = const, has a logarithmic velocity
distribution over the entire range y,<y<6 and relatively simple characteristics, which

in many instances satisfactorily describe a real flow both qualitatively and quantita-

tively. We shall call this model the "logarithmic boundary layer." The logarithmic
boundary layer of an incompressible fluid at a smooth impermeable plate is described

by the following characteristic relationships:

]==0, b_0; p=-const;
I

qp==e. -[--.._- In,i;

I
V--_- In _;

'Vg
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L_,'.
_2

- F2 ,) ;Hs (I I _ -'

• IT I X_ l

V-E, In Re**.

(1-10-2)

With c. = 5.5 and X ° = 0.4 the last relationship of (1-10-2) is well approximated

by the relatively simple Karman formula

m

2 ==
V-_f 2,5 In Re** + 3,8. (1-10-3)

As can be seen the law of friction of the logarithmic boundary layer (1-10-3) is a

particular case of (1-9-9), where as the Reynolds member increases the laws of
friction for the model and actual flows tend to the same limit, expressed by formula

(1-9 -11).

1.11. Power-law Velocity Profiles

The logarithmic velocity profile is the envelope of a family of power-law profiles

_=An". (1-11-1)

where 0<n<l.

In many cases the use of a power-law approximation for the velocity profile is
quite useful.

For the conditions f = b = 0, _ --- 1, we have the following relationships:

e =-_,';

"I" n
= i"_;

n •

_" ==11+ n) (i :}- 2n)'

H ==1 -.[-2n;

B
et _ Re**"';

2

B_ 2 (A_'*'")l+n

(1-11-2)

In this case the momentum Eq. (1-2-2) takes the form

(1-11-3)

/2_99
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On substituting the value of the coefficient of friction from (1-11-2) into (1-11-3)

and assuming that the turbulence layer sets in at point x = Xcrit, we find

Re**l÷m D _'l+m ] "_m
-- "'ecrit -- 2 B (Re.-- Re. crit). (1-11-4)

Here Re**
erit is the Reynolds number set up from the thickness of the momentum

loss at which boundary layer turbulence is generated; Re x = WoX/V is the Reynolds

number set up in accordance with distance from the leading edge of the plate.

If the turbulent boundary layer develops on the entire plate (Xcrit = 0), then

I

Re'* = B Re. ,

et = B, Re_'m';
m

m_ _ i -1- nz '

M

aÁ= k l---4--_/

(1-11-5)

The values of the coefficients in (1-11-2) and (1-11-5) for various values of n
are given in Table 1.1.

/3___o

TABLE 1.1. Values of Coefficients in

Formulas (1-11-2) and (1-11-5)

n

Coefficient
117 118 119 Ill0

A

H
Ill
B

B,

8,74

0,0975
1,28
0,250
O,O252
O,200
0,0576

9,71

O,0890

1,25
O.222

O, 0206
O, 182
O,0450

I0,6

0,08t8
1,22
0,200
0,0190
0,167

0,0362

11,5

0,0757
1,20
0,182
0,0148
0,154

0,0308

In practice the formulas for n = 1/7 can be used in the range Re** < 104. Figure

1.8 gives a comparison of the available test data with formulas (1-10-3) and (1-11-2).

1.12. Wall Turbulence near a Rough Surface

When the order of the thickness of the viscous sublayer becomes equal to that of

the height of the roughness, the flow conditions near the wall change. However, this
is not reflected in the laws of friction in the turbulent core flow.

/3__A1
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As a consequence,the only
changeis the definition of the
wall regionwhich is the limit
of developedturbulent flow.

For flow over a smooth

impermeable surface this
limit is of the order

FIG. 1.8. Law of friction for the turbulent boundary
layer at a flat plate: 1--formula (1-10-3); 2--for-

mula (1-11-2); B = 0. 0256; m =0.25; points--exper-
imental data [164].

g'_ o'--_' (1-12-1)

while for a rough surface it is

Yl _._, (1-12-2)

where e is the roughness height for a uniform roughness or some "effective height" for
nonuniform roughness.

Obviously, the measure of the effect of roughness on the turbulent flow around an
impermeable surface will be

_.= v (1-12-3)

_ fit .I I ill

rljIIIfpfu!

t,2 -J__---- PFI-!-Jrt
87g_ 2 4 ES_ 2 _ $8//7 s g _ $8_7 e 24

v

FIG. 1.9. Drag law for rough pipes. I--laminar
flow; 2--turbulent flow in a smooth pipe. Experi-

mental data of Nikuradze (sandy surface): Q--R/A

= 507; 0--252; e--126; 0--30.6; _'_--15. Experi-

mental data of Galavich (industrial roughness):

A-R/A = 1300.

So long as the roughness

protuberances are "submerged"
in the viscous sublayer they do
not influence the transfer

process.

Therefore with _ less
than some value, the seurface

roughness is "hydrodynami-
cally smooth." The laws of

flow around a rough surface
were first investigated in
their pure form by Nikuradze,

based on a uniform granular
roughness.

The generalized result of

these investigations for flow
in circular pipes is shown in

Fig. 1.9. In the region 7/
< 5, i.e., when the rough '-e

ness does not protrude beyond

the limits of the region in
which molecular viscosity is

completely dominant, the surface is hydrodynamically smooth.

In the region _e > 40 molecular friction essentially has no effect on the overall
hydrodynamic drag and the quadratic drag law is clearly expressed.

/3_ 2
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CHAPTER2
THERMALANDDIFFUSIONBOUNDARYLAYERS

2.1. TheDifferential Equationsof Energy andDiffusion

Theequationof heatpropagationin a steady, homogeneous,planeboundarylayer
has the form

Here qis the heat flux in the direction of the y-axis attributable to the molecular
andturbulent heat transfer; % is the volumetric density of all energysources and
sinks at a givenpoint with the"exceptionof heatevolveddueto work performed by the
flow.

In the laminar boundary layer

dT
q = -- X _-, (2-1-2)

and in the turbulent boundary layer

_ c)Tq== -_- - c,,,w-5(l - #), (2-1-3)

where _r = $ _v0'--+ v_0' is the thermal analogue of the coefficient _ in (1-1-6).
vw8

For the actual quantities it is convenient to represent the equation of heat propa-

gation in the form given by M. F° Shirokov [99]:

(2-1-4)

or, with C = const°
P

Here

'{ ["_ XD--_" T*-.F(I:_r--I)-_ +qv =

e)T* dT*
= C_. _ + C,,p_,v -E_-" (2-1-5)

(2-1-6)

is the stagnation enthalpy,

2O

r-= r + _---; (2-1-7)

/3_2_3



is the stagnation temperature.

C_
Pr-- k (2-1-8)

is Prandtl's number, which describes the ratio of the intensity of molecular friction
and molecular heat conductivity. In the case of gases this quantity depends primarily

on the valency of the molecules.

The energy equation for the turbulent boundary layer of a compressible gas, with

chemical reactions taking place, is conveniently written in the form [77]:

di* z Oi*: 0
_. --_ + _, _ =-_ (q._)+

+qv"}'-_ (Le-- l) ÷ _-p (Le,-- I) ,,--_-y _ +
(2-1-9)

or, for the case Pr = Pr T = Le = Le T = 1,

_*z 0i*z 0

fro. -_- + W,-_-=-_y (q..) + qv. (2-1-10)

where

• " -'_'-, i_ =*. ciit;

i

T

• _ ti.0.,zt = Cp, JT +

e. is the concentration by weight of the i-th component; i 0 is the heat of formation of
1 1

the i-th component.

(2-1-11)

Taking account of Eq. (2-1-11) we have:

q_' =" qzl + q"T'. (2-1-12)

where

Oi*_

Oy ' q_T--', Pr, Oy (1--_),

where _, = Cv_ is the turbulent Prandtl number,

n

Cp = I
_ c_Cpt.
1=1

For a flow of

/34
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conducting fluid in an electric field, in the region of small magnetic Reynolds numbers

and Hall parameters, we have

qv---jeE,,

where E is the electric field intensity in the y-axis direction.
Y

The equation for the dispersion of matter in a stationary, plane boundary layer
takes the form

de, Oct =. djt , • (2-1-13)

where Ji is the specific flow rate of the i-th component in the y-axis direction attribut-

able to molecular and turbulent diffusion; _. is the rate of formatiGn of the i-th compo-
1

nent due to chemical reactions; c. is the concentration by weight of the i-th component.
1

In the laminar boundary layer of a binary mixture

r*, +°c,,,_c,).I' =- eD'= [ 0.9 r "
(2-1-14)

In cases of interest in practice the terms defining thermal diffusion are small in
comparison with the diffusion term (less than 10%). Therefore, we can assume, with

adequate accuracy

J,I,,.i_Di ' 8c,-_-. (2-z-15)

In the turbulent boundary layer

h = - eo,,_- _,c, (I -To), (2-1-16)

where To = _e,0c,+ or.c,is the diffusion analogue of the coefficient flin (1-i-7).
vsc_

Prandtl's formula (1-3-6), applied to the diffusion problem, is written as

:o_. Oc,
i,= #to -_--E_-_O-To),y

(2-1-17)

where 1D is the diffusion mixing path length. The quantity pT/PD T = Sc T has the sense

of the turbulent Schmidt number. Correspondingly, PDTCp/X T = Le T is called the

turbulent Lewis-Semenov number, ff we introduce the concentration of the i-th chemi-

cal element _. ignoring.the chemical compound in which it is found, then, in the
1'

absence of intra-nuclear transformations, we have from (2-1-13):

_. _ + #:,, _ = ---_, (2-i-18)
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where Ji is the specific flow rate of the i-th element in the y-axis direc-

tion.

2.2. Similarity of the Enthalpy-, Concentration- and Velocity-Fields

As follows from Eqs. (1-1-3), (2-1-4) and (2-1-18), if the condition Pr = Sc

= Pr T = Sc T = 1 is satisfied, and also with f = 0, zZ0"* = const, Ci0 = const, iw = const,

Ciw = const, qv = 0, similarity must exist between the distributions of velocity, total

enthalpy and concentration of the chemical elements

iz w -- i*z _, -- _t w (2-2-1)
IX w -- i'T,,0 --_*t, -- _t w

With qv = 0, Cp = const, C i = 0, M 0 << 1, and without chemical reactions, we have

from (2-2-1)

rw --r __¢ -- cw (2-2-2)
D _ _ C, -- CW

Consequently, for the conditions stated, the three-fold Reynolds analogue is
satisfied:

_w __ qz w It w

--_0-- p, tr, (i*zO -- it. w) _" p,w, (ct* -- at w)' (2-2-3)

where

"w O- ¢'- w --" St=;
-_o -_-'-'_' p=_*(i'z0-- it w)

hw = Sto
t,w, (_. -- _tw)

In the absence of chemical reactions in the boundary layer

St t = qw -----St/) _ It w
I=,=',(i** -- iw) h=', (ct. -- c, w)'

(2-2 -4)

and with constant specific heat

St= qw
C/p,=, (T** -- Tw) " (2-2-5)

If Pr "_ 1, as a first approximation we should replace zZ0"* by zL_Xv"* (equilibrium

• by T* (equilibrium wail temperature) inenthalpy) in Eqs. (2-2-3) and (2-2-4), and T O w

(2-2-5). In this way i* and T* are the enthalpy and temperature at the thermally
W W

isolated wall surface.

/3_A6
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It is known that

t'w = ie nt-r_oo (2-2-6)
y,

for the case C = const
P

T'w = r,--}-r2--d--_p, (2-2-7)

where r is the stagnation enthalpy (or temperature) recovery coefficient. In the gen-
eral case the recovery coefficient r depends on many factors [43]. For an imperme-
able plate, for the laminar boundary layer

•_ pr,12 (2-2-8)

and for the turbulent boundary layer

r _ Pr'/3. (2-2-9)

Also, the correction factor K

St=-- Sta------_- K.

must be inserted in the three-fold analogue (2-2-3) with Pr _ Sc # 1.

(2-2-10)

For gases, with Pr T = Sc T = 1, this factor is adequately approximated by the
formula

K _ Pr-2/3_ Sc-_/_• (2-2-11)

The Prandtl and Schmidt numbers are a qualitativemeasure of the ratiobetween
the thicknesses of the dynamic-, diffusion-and thermal boundary layers, as given in
Table 2.

TABLE 2.1. Relationship between
the Thickness of the Thermal-,
Diffusion- and Dynamic-Boundary
Layers

/3_/v

Differing from the molecular Prandtl and Schmidt numbers, which should be
viewed as physical parameters of fluids, the corresponding turbulence analogues

depend not only on the physical properties of the fluid, but also on the hydrodynamic
state in the flow. This presents a major difficulty in the solution of problems in
turbulent heat- and mass transfer.
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The experimental values of the turbulent Prandtl and Schmidt numbers for the wall

turbulence region lie in the range 0.85-0.90. Values of the order of 0.5 are found for

plane turbulent jets. In more complex situations--for example in the boundary layer
separation region--the turbulent Prandtl numbers, as shown by the measurements

made by Z. Zaric [255], may be considerably less than unity.

In addition, in the general case the turbulent Pr T- and Sc T- numbers are not

constant over the boundary layer cross section. Experiment has shown that the tur-

bulent Prandtl number may depend significantly on the magnitude of the molecular
Prandtl number, the level of the free-stream turbulence and on the Re number.

However, for fluids with Pr = Sc = 1, the condition Pr T = Sc T = 1, first formulated by

O. Reynolds in 1874, remains a good approximation for calculations of the turbulent
thermal- and diffusion boundary layers.

2.3. Enthalpy Factor in a Gas Boundary Layer

In the boundary layer of a gas obeying the Clapyron-Mendeleev equation of state, by
virtue of the condition dP/dy = 0, the gas density is unambiguously related to the
thermodynamic enthalpy by the relationship

;_ p i,
-- _----_-- (2-3-1)

For a homogeneous gas (Pr = 1), without chemical reactions, and with C = C
p po'

using Eqs. (1-1-4) and (2-1-4), we find

i* _ i W

i*_iw =®; (2-3-2)

i T
-V,-- r: = - a -- (9"0-- l)®', (2-3-3)

*: owhere _b = iw/i ° = Tw/T ° is the enthalpy (temperature) factor; ¢o = i /i ° = T /T o is

the adiabatic kinetic enthalpy (temperature) factor; A0 = ¢ - ¢: the heat transfer factor.

The case A¢ = 0 relates to flow around a thermally-insulated body; with A¢ > 0 the

body gives up heat to the gas flow, and with A¢ < 0 the body takes up heat from the gas
flow.

With Pr _ 1, and also with dP/dx _ 0, Eqs. (2-3-2) and (2-3-3) are inaccurate.
Taking Eqs. (2-3-2) as a basis, we write

i O --iw

i, w_iw :X(_) tO_ (2-3-4)

2g • (2-3-5)

/38
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The forms of the functions r(_) and e(_) in the general case depend on the l>r num-
ber, the pressure gradient, the mass transfer and other "perturbing" factors appearing
in the boundary conditions for the dynamic- and thermal boundary layers.

Taking Eq. (2-3-2) into account, we can write

_*-- iw -- [ 1 (I "_°° -- 11
(2-3-6)

With e = r = 1, Eq. (2-3-6) goes over into the known Crocco integral (2-3-2).

At the limits of the thermal boundary layer, we shah require that the quantity

satisfy the same conditions as does w at the limits of the dynamic layer. Then, with

y = ST, D = 1 and with i* = i* w, r(5 T) = r. As pointed out above, in the turbulent

boundary layer the recovery coefficient is about _rPr, i.e. for gases, close to unity.
Therefore, without significant error, we can take r(_ ) _ r, and

A4
14_ i -}- r-_--. (2-3-7)

Then, from Eq. (2-3-4), we have

ilie._,--A, eo_-- (**-- 1) co" (2-3-8)

where _ *= iw/i o is the kinetic enthalpy factor. With a power-law approximation for

the velocity- and enthalpy fields

o_t_ ' ____r (2-3-9)

we find that

where

O__%_Jr (2-3-10)

°,=

Far from the boundary layer separation point n _ n T, and the relative similarity

O=,e_. (2-3-11)

exists.

Figure 2.1 gives a comparison between formulas (2-3-2), (2-3-6) and the tests of
Danberg [125] and Hill [155]. The tests covered a rather broad range of Mach numbers
(up to 9.1). As can be seen from the diagram, the tests on the plate [125] agree with
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a , , i , ,_I

Fig. 2.1. Comparison be-
tween formulas (2-3-2),

(2-3-6) and experiment.
1--Computed with (2-3-2);

2--computed from (2-3-6),
e = 1.0; 3--computed from

(2-3-6), e = 0.5; o--Dan-
berg's tests [125], flat

plate, M = 6.4; e--Hill's
O

tests [155], conical nozzle,
M = 9.1.

O

the adopted relationship with e = 1.0. The tests in
conical nozzles [155] agree satisfactorily with Eq.

(2-3-6), with e = 0.5, in the wall region.

2.4. Integral Energy and Diffusion Relations

On integrating Eq. (2-1-10) with respect to the
y-coordinate over the boundary layer thickness, and

taking account of the equation of continuity (1-1-5), we
obtain an integral energy relationship for the two-

dimensional boundary layer

a**,c dpoda", a*', d ( oai.0 + F
dx _ waAi'zdx _ d_

qv a, q_ ,

(2-4-1)

where Ai Z = iw - i2_ w

enthalpies and

is the difference in total

:r

,",=Ja(, (2-4-2)

is the total energy loss thickness, similar in its prop-
erties to the momentum loss thickness 5** (see

(i-2-4)).

With C
P

= const and in the absence of chemical reactions, we have from (2-4-1):

da**r a**r d (WoAT) __.a**rdP'
_F + _,_r ax ecix

qv_r - qeT ,

ar

(2-4-3)

where

ar

We introduce the following notation:

[_e.,m, fo_Vo_l**lz ; (2-4-4)

(2-4-5)

/40
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q'_= q_ " _e_=-_-_._woAi z (2-4-6)

Then, in analogy with (1-2-10), we find

d Re**/.
d2 -i-Re°',J_ + (qv -- fw) PeL = St-ReL" (2-4-7)

Similarly, for the axi-symmetric case, we have

i d (flit) I dR d [In (ai=R)]. (2-4-8)

For flows of conducting fluids in electric and magnetic fields, in the region of
small magnetic Reynolds numbers and Hall parameters, and taking the expression for
qv (see Section 2.1) into account, we obtain the integral energy relationship in the

form [18] :

a) for the electrode wall

/4___A

or

where

da'*t [ 1 d (PoWoAi)d_ +8"*_ p,u,,ai d._ I-

d_ (--He+H) --}w=Stt

d Re**_
F Re °'n f,z -- _wReL = ReLS_,

b) For the insulator wall

E'.) du

!'!£ "_'_ _ _l**fl:

! dM _L I di%
ln -- -_--_--r- -ff _ (!-I-- He);

(2-4-9)

(2-4-10)

(2-4-11)

(2-4-12)

or

d,". + +

, di'.(#_ #_)]_ fw= st,$T-'_

_']-Re**a rr, -- ]w l_eL-" Ret. St,,

(2-4-13)

(2-4-14)
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where /4__22

||

S
0

_'o t

For the axi-symmetric boundary layer, in analogy with (2-4-8), an additional term

! dR appears in (2-4-12).
R d2

Integrating the diffusion Eq. (2-1-18) over the boundary layer cross section, taking
into account the continuity equation, we obtain

d_l"°dx"]-' p.=_,a_,8"°dsd (pom,A_') _.]w =Sto ' (2-4-15)

where AC 1 = C w - C O is the difference in weight concentrations of the diffusing element

IO

at the wall and in the flow; ___ _ (1 Q---_a,--_w] dy is the mass loss thickness;

Sto--" hw. l'w(_w'_.) is th¢ Stanton diffusion number; Jiw is the flow of diffusing element at

the wall. In the general case Jlw _ Jw"

Introducing the nomenclature

ReOe Po_.8"*O. = 1 d(A_ "_

Ret----_--. L , ! (2-4-16)

we find

d Re'* 0

d= -l-l_e*'o Io -- }* Re, = l_eLSto. (2-4-17)

For an axi-symmetric boundary layer

d
I=,=_ - [x'.' (A_,_)I. (2-4-18)

For a given thermal load and diffusing substance at the wall, from Eq. (2-4-7) and

(2-4-17) we have (with qv = 0)

l.__L_ Jfl_eee
Re**== _,= _,.. = &P=),=,,-F

&

+:--+-j',,,...+A,-.,..,,+.+t; (2-4-19)

g._,J
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2.5. Approximations of the Distribution of Thermal- and Diffusion- Flows over the
Boundary Layer Cross Section

(2-4-20)

We shall approximate the distribution of thermal and diffusion flows over the
boundary layer cross section by a third-order polynomial, whose coefficients are
found from the differential energy and diffusion equations, with boundary conditions

with y = O, qz = qzw'

I, -----i,w;
withy--_ q:=O;

withy-----_o ], = O.

(2-5-1)

Integrating Eqs. (2-1-4) and (2-1-13) over y, with y _ 0, we find

qs '_"qwz -- _ qv dy -_- lw (i" -- i'w); (2-5-2)

i, "+ I,,+ -- _'e ° @ + i,,,. (e, -- e,,,.).
(2-5-3)

Conditions (2-5-1), (2-5-2) and (2-5-3) are satisfied by the following approxima-
tions:

)Stz ! qv d_ t -}- b, ,t_

_'= 1 + , + 2_, ;
(2-5-4)

sty' c,d_o _- b,o7

7,=Z. ,+ ,+2to '
(2-5-5)

where _ = qz/qz w; _ = Jl/Jiw are the relative thermal and diffusion flows; bii =_w/Stz ; /4__4

= jiw/StD are the thermal and diffusion permeability parameters, _o and __o are thebiD

distributions of thermal- and diffusion flows under "standard" conditions in the absence

of perturbing factors; _" - (_-_w)/(Co-C w) is the dimensionless weight concentration of
the diffusing element.

In conformity with the adopted approximations

_,=7,.= t - _' + 2_,. (2-5-6)
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2.6. "Logarithmic" Thermal- and Diffussion-Boundary Layers

We introduce the thermal and diffusion analogues of the "logarithmic" boundary

layer considered in Section 1.4.

It follows from Eqs. (2-1-17) and (2-1-12) that the ratio T/q = T/j I is constant over

the boundary layer cross section for the case of flow of a fluid having constant physi-

cal parameters around an impermeable plate. With boundary conditions T w = const

and c w = const. Then, with Pr = Sc = Pr T = Sc T = 1, taking into account (2-1-11) and

(2-1-17), we find

!

_" ----c*+ _-- In_*. (2-6-1)

where, for the thermal layer

0 qw9
9°= Tr= -_-,_* = _r= _.Pr0'' (2-6-2)

and 0"= V"q.,ar/(p.=.cp) is the thermal analogue of the friction velocity; and, for the
diffusion boundary layer

e, D C,w. ],wY .
'to == YD = A--_ ' _* = "qD -- DAc* ' (2-6-3)

u" = Yi,,,_c/(p,=,Sc,) is the diffusion analogue of the friction velocity.

The computational formulas for all parameters of the thermal- and diffusion

"logarithmic" boundary layers are established in analogy with the dynamic boundary

layer and have the same form as Eqs. (1-10-2), (1-11-1), (1-11-2) and (1-4-3), only

in the case of the thermal boundary layer CT should replace 9 and, for the diffusion

boundary layer, _PD should replace _0, in conformity with (2-6-2) and (2-6-3).

With Pr # 1 and Sc # 1 a correction (see Sect. 2.2) should be inserted into the laws

of heat- and mass transfer. For gases (Pr = Sc = 1), with a power-law approximation
of Eq. (1-10-3), these laws can be written in the form

B
St, = _- Pr-,." Re_"-m (2-6-4)

and

B "" m

St_ = "_'-Sc- '. '= ReD- , (2-6-5)

where the values of B and m are selected from Table 1-2. For the region Re T

= Re D < 104' B/2 = 0. 0128, m = 0.25. With simultaneous development of the

dynamic, thermal and diffusion boundary layers at a plate, using the integral
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energy and diffusion relationships (2-4-7) and (2-4-5), for j = 0, qv

conditions T = const, c = const, we obtain
W w

Nu,, = 0,0288. Re °'s Pro.4;

NuDz -----0,0288-Re °'s Sc'. 4.

= 0 and boundary

(2-6-6)

(2-6-7)

4
Nul *_" r " " "

: , jjjj

III

_ ' ]J]i

, N JJJtl
3 ' :2::
2 ! !!!!

" 'll![O
_" e _ ;seee_e'2 3

Fig. 2.2. Local values of
Nu with a subsonic flow

x
of air around a plate.
Straight line-computed
from formula (2-6-6);
points--data from B. S.
Petukhov [86].

i

'1111 ,,
ill[ i i
[ II1
Illl

Illl

' i

Fig. 2.3. Mass transfer at a flat plate.
Straight line--calculated from formula

StDSC0.6 = 0.036 Rex°. 2 derived from

(2-6-7); Points: O--Wade, X--Pascual,
C)--Powell, O--Powell and Griffiths,
A--Lur'e and Mikhailov.
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Fig. 2.4. Law of heat transfer at a
flat plate.
Straight line--calculated from for-
mula (2-6-4); Points--test data [ 182].

Figures 2.2 and 2.3 show comparisons of the data of B. S. Petukchov, A. A.
Detlaf, V. V. Kirilov [86] with formula (2-6-6) and the test data of various authors
with formula (2-6-7).

Figure 2.4 presents the test data of Whitten, Moffat and Kays [182] on the heat
transfer at a flat impermeable plate, for the condition T = const compared with the
calculated values from formula (2-6-4). w

/4__fi6
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CHAPTER3
THE BOUNDARYLAYERWITHVANISIUNGVISCOSITY

3.1. Degenerationof the Viscous Sublayer

As the viscosity decreases, with other conditionsremaining unchanged,the dynamic
layer becomesthinner, andthe flow increasingly takes on the characteristics of the
flow of an ideal fluid. However,in sucha situationthe rates of changeof the thick-
nessesof the turbulent core andviscous sublayerturn out to beunequal.

As hasbeenshownin Section1.9, asRe--*oo, _i _ 0; i. e., the thickness of the
viscous sublayer falls off more rapidly thandoesthe thickness of the entire boundary
layer asthe Reynoldsnumber increases.

For a more general considerationof this problem it becomesnecessaryto intro-
ducethe conceptof a fluid with vanishingviscosity.

A characteristic feature of this modelfluid is that its viscosity p _ 0, but never
actually goes to zero. Hence any fluid flow with vanishing viscosity has Re _ oo and
forms a turbulent boundary layer around a rigid surface.

For the laminar sublayer it follows from (1-6-10) that as _ -* 0

""_' f_Re'" (ea- l) _w (3-1-1)

where

With'Jw

Z= _'wl_e';_"- '

= O, we have from (3-1-1)

-, (3-1-2)

and with f = 0

ct a _ 1).
21w (3-1-3)

Further, by definition, we know

O_ea< 1; 0<_** < oo. (3-1-4)

Hence, if we attach the subscript 1 to the quantities w and } to describe the nomi-
nal limit of the viscous sublayer and of the turbulent core, we see that for any condi-
tion, as Re-- oo, _1 --" 0.

Thus, in a fluid with vanishing viscosity the viscous sublayer degenerates, and
the role of viscosity reduces only to the creation of the effect of "attachment" of fluid
to the wall, i.e., assuring the conditions ¢0= 0 with _ = 0 and the dissipation of the
energy of turbulent motion.
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These properties distinguish a fluid with vanishing viscosity from an ideal fluid and

allow the formation in it of an ideal turbulent boundary layer--i, e., a layer with T1 -* 0.

3.2. Degeneration of Density Fluctuations

The effect of density fluctuations attributable to the inhomogeneity of the tempera-

ture field on the Reynolds stresses is expressed by the quantity

Since the turbulent Prandtl number Pr T _ 1, we can take as an estimate [44]

AT _T

WO WO

Then

From the equation of continuity we find

now d_ 0 d_**
_-'_-_-F _ h_ -_-,

i.e., in view of the momentum equation we can assume that Wy/W ° ~ Cfo

Thus _ decreases as the coefficient of friction decreases, and, since the latter

tends to zero as Re -- _, then also fl -- 0.

3.3. Relative Drag Law

We introduce the quantity

(3-2-I)

(3-2-2)

(3-2-3)

Cf (3-3-i
where Cfo is the coefficient of friction for some standard boundary layer, and compar-

**
ison is made with Re = idem.

We shall choose tbe simplest possible boundary layer as the standard--namely, a

turbulent, isothermal boundarv layer, without pressure gradient, at a smooth and

impermeable plate.

We integrate Eq. (1-3-6) so that

) (3-3-2)

/4_ s
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where

With Re -- co, in accordance with (1-9-6) and (1-9-11) and with _ -- 0.

,_._
-- In_,

(3-3-3)

* *-n
or, if 41~Re ,

Z---*n. (3-3-4)

With f = 0, n = 1; with f = fcrit' n = 2/3, i.e. as Re -- oo

-_- <Z< I. (3-3-5)

Thus, in an ideal turbulent boundary layer--with a gradient-free flow rigorously,

and otherwise approximately,

• !

o

This integral expresses the remarkable circumstance that although the absolute
magnitude of the coefficient of friction also tends to zero in fluids with vanishing vis-

cosity, its relative changes when influenced by perturbing factors (nonisothermal state,
compressibility, wall permeability, etc) remain finite.

Equation (3-3-6) defines the limiting relative drag laws of the turbulent boundary

layer. Here special attention should be given the circumstance that this equation
(which describes a set of important properties of the turbulent boundary layer), in its

general formulation, does not depend on any empirical constant.

3.4. Relative Law of Heat Transfer

From (2-1-12) it follows that

where
liT,

(3-4-1)

(3-4-2)

/5__q0
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St) and t} are defined over _i.q7s --_ _ Re- r

The properties of the quantities _Ti' _T and Z T are the same as those of their

hydrodynamical analogues. With Re _ oo

> I (3-4-3)

Eq.

If the temperature and velocity fields are similar, then _ = _T' aw[_= 8 O/a_T,

(3-4-3) goes over into (3-3-6) and q = ,I,.
S

But in the general case, with substantial infringements of similarity of the tem-

perature and velocity fields, the functions @ and _P do not agree. Thus, for example,
s

in the diffusor-flow region of the turbulent boundary layer (f < 0), _I,can be consider-
ably less than unity, while with finite Reynolds numbers q' in the diffusor-flow region
may change very little, s

3.5. Relative Law o_ Mass Transfer

From (2-1-17) it follows that

z.._ ¢(_;7+.
°'° -_, _1._o_)

d} o, (3-5-1)

where

• I

" /Sto_
_o= _,_)_ is the relative law of mass transfer.

It is not difficult to show that the properties of the quantities _Dt' _D and Z D are

like those of their hydrodynamical analogues. Hence, with Re -- o¢, we have

(3-5-3)

/5_kz
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If condition (2-2-1) is satisfied, i.e., if similarity exists betweenthe velocities,
enthalpiesandconcentrations, then

tt'_L-'-Ws= W. (3-5-4)

However, in the general case this similarity may be infringed. In particular, in
the case of a gradient gas flow, the law of friction can differ considerably from the

laws for heat- and mass transfer. The analogy between heat- and mass transfer, i.e.,

the equality _I,s = 'I'D, is maintained over a wide range of change in the determining
parameters.

3.6. Distributions of Velocity, Temperature and Concentration over a Turbulent

Boundary Layer Cross Section at High Reynolds Numbers

Equation (1-5-4) can be reduced to the form

dd_ _ 0°_°_ __ (3-6-1)
_ 2 (1 -- _) 1

or

g_

dw _

e n 0 --_)
(3-6-2)

where co 0 is the dimensionless velocity under standard conditions.

Integrating, we find

I I

p) :d®= ". d3
- t (2--5 F"

(3-6-3)

with Re - oo, as a consequence of the increasing fill-in of the outer portions of
the turbulent boundary layer, the velocity profile begins to be decisively determined by

Prandtl's law--i, e., a situation is produced such that the quantity]* becomes essentially
independent of perturbation factors in the derivation of the laws of friction and heat

transfer. If we also take into account the asymptotic properties of the boundary layer
(_ --* 0), we obtain

!

t
l -- ®,. (3-6-4)

Consequently

i

V_'- d®_l--%. (3-6-5)
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If we set _ = _l in Eq. {3-6-4), then, as Re -+ 0% _t " 0, and formula {3-6-4)
goes over into the limiting formula. Hence, fnr large Reynolds numbers we have,

approximately

I

(3-6-6)

or, in consideration of Eq. _1-4-3)

_I12 d,.,,, -- t --_+.
Io

(3-6-7)

Similarly, formulas for the distributions of enthalpy and concentration can be
found:

(3-6-8)

and

Henceforth, Eqs. (3-6-7), (3-6-8) and (3-6-9) will be used to derive the limiting
distributions of velocity, temperature and concentration under the action of various

perturbing factors.

/5__23
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CHAPTER 4
LIMITING RELATIVE LAWS CF FRICTION AND HEAT TRANSFER WITH

A LONGITUDINAL GAS FLOW AROUND AN IMPERMEABLE PLATE

4.1. Limiting Law of Friction for a Non-isothermal Boundary Layer on a Flat Plate

For the conditions being considered, it follows from Eq. (1-6-15) that "tlvo-- 1, i.e.
the non-isothermal state and gas compressibility should not affect the distribution of
the turbulent shearing stress over the boundary layer cross section with the approxi-
mations adopted.

: i i'Xl

FIG. 4.1. Effect of com-

pressibility on the distri-
bution of turbulent shearing
stress over the boundary
layer cross section (ac-
cording to [175]). 1--M
-- 0; 2--M = 5.

The results of an analysis of the effect of com-
pressibility on the distribution of T given in [175]
(Fig. 4.1) are a direct confirmation of this deduc-
tion.

Taking into account Eqs. (1-6-15), (2-3-1) and
(2-3-8), for e = 1, we have from Eq. (3-3-2):

arcsin 2 (4"-- ]) + a_E

2(,*-- I)_, +.% /',
F l

(4-1-1)

where

z = V 4 (,* - l ) (, - + _,) + a.?=.

WithR- co, wt-. 0 and Z--- 1. As a result, we
have

®-- _*--1 [arcsin
• 4,b "

arcsm --E- | " (4-1-2)
J
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Formula (4-1-2) defines the relative limiting law of friction for a non-isothermal
turbulent boundary layer at an impermeable plate. It does not contain empirical turbu-
lence constants and is not related to any semiempirical theory of turbulence. The

quantity Cfo in the limit laws can be established both on theoretical grounds (for exam-

ple, in terms of some semiempirical theory of turbulence for non-isothermal flow) and
directly from the experimental data. For a supersonic gas flow around a thermally-
insulated plate, (3,=0), we have from (4-1-2):

"'" Y "-V-)
llr**-- ¢'-- i

(4-1-3)

or since
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k--I

(4-1-4)

For subsonic gas flow (_*---_I), we find from (4-1-2)

?.4

I2

.1D

02

0

FIG. 4.2. Depend-

ence of Coo on M O

and A¢ according to
the limit formula

(4-1-2). 1--A¢ =1;

2--A¢ =0.5; 3--A¢
= 0; 4--A¢= -0.5;

5--A¢ =-1; 6--_¢
=-2; 7--A¢ =-3.

2 ]' (4-1-5)

Figure 4.2 illustrates the dependence of _b on M ° and A¢,

as computed from (4-1-2), in which case •

Spalding [164] has proposed a relatively simple approxima-
tion of (4-1-2) which, to within a few percent, is valid up to

M _ 6.0, and has the form:
O

rr,. v,'. ,]'++,_¢ }-'.,.= {+ t_.--_-. ] -t- (4-1-6)

Assuming r = 0.9 and k = 1.4, we obtain

[( rd _,I, , 2"---1-', +.l] }-'. (4-1-7)

For the subsonic gas flow region we can assume

in the range 0.5 < ¢ < 3.0.

(4-1-8)

Under some conditions it is convenient to introduce the

relative coefficient of friction Vlr**__ ( c, _ , which involves
" \elm/Re-..'_

only the effect of the non-isothermal state. Here Cfm is the

coefficient of friction with A¢ = 0, with the same values of
Re** and Mo.

From Eq. (4-1-2) and (4-1-3) we can write two limit expressions for q',. :

2w,**--,,. =( )':

w_.,-__ _,= (_,._[-'Y,_+,/
where _"=_/_p* = Tw/T*w is a generalized temperature factor.

(4-1-9)

(4-1-10)

/55
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TABLE 4.1. Effect of the generalized temperature
factor on the relative laws of friction and heat-
transfer with Re --* co

_¢°-,|

0 0,25

4 1J8

4 2,02

0,5

1,38

1,49

0.75

1,15

1.18

2

0,68

0,62

3

0,54

0,44

Table 4.1 shows the comparative results of computing with formulas (4-1-9) and
(4-1-10).

As can be seen from the table, the relative influence of the temperature factor on
the limiting law of friction is almost identical for both subsonic and supersonic flows.

Therefore, in practical calculations with large Re numbers we can adopt a compara-
tively simple interpolation formula.

k--I s

[ i_ ":_--w ..... ::k-- I " (4-1-11)

/5__77

IK
2*

N ,4,7 arctg (0. 424M,) '.. . ]
_ _ /! 2/ (4-1-12)

, r,_ A comparison of calculations
o _# _a I_ Y,6 2_ _4 48 3,2 3_ _p with (4-1-12) and the exact formula

(4-1-2) is shown in Fig. 4.3.
FIG. 4.3. Comparison of calculations with
formulas (4-1-2) and (4-1-12). Calculations

with (4-1-2): ¢ = ¢/¢M' with ¢ according to

(4-1-2) and W M according to t4-1-3); 1--¢*

= 1; 2--¢*= 2; 3--¢*= 18; 4--calculated from

. 12,'e"

With Re-- 0% co1--. 0, Z-_ 1we have

(a) Withe < 1

For the case r = 0.9 and k = 1.4,
we have

With relative similarity of
velocities and enthalpies we find

1 [ 2 (q,*-- !) + ,a,l,(@'-- I) Z arcsin

--_csin2(_'--i)"E +,.i_@],,

(4-1-13)

where e is the off-similarity factor.
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V_. _ l._._i_l [arcsin 2( _°- !) +'M'-- J/4(_* _ t) (_'+_) + (,_)"

eA4b I--arcsin I/4 (_0 -- !) (_* + ._) -t- ('-_)' t

(4-1-14)

(b) Withe >1

l [ 2 (_*-- I)'-' -I-*A_11'--'--_ arcsin If 4 (+"-- t)(_" + a+) + (,_,),

-- arcsin "_ '--I-
V4(÷* -- t) (_* + A,,I,)+ (,._+),

ii v-=-t-i,.

For subsonic velocities

(4-1-15)

(a) Withe<l

2 ]. (4-1-16)_=--" _-+ V+- (+ -- I).

03) Withe >1

From (4-1-14), (4-1-16) and (4-1-17) it follows that the magnitude of e most mark-

edly affects the relative change in the coefficient of friction at subsonic velocities. The

degree of this effect can be seen from Table 4.2.

TABLE 4.2. Value of (Cf/Cfo)Re** at subsonic

velocities from the limit formulas (4-1-16) and

(4-1-17)

mr

0
0;25
0,5
0,8
!
2
5

I0

o

0
0.71
0,9

?,97

I,I
1,26
1,39

O0

0,_

4
2,65
1.88
i .81
1,78
1,69
! ,59

O.S

2
2,35
1.45
1,41
1,38
1,33
1,29

,26

0,5
0,62
0.65
0,67
0,69
0.71
0,75

.77

0,33
0.45
0,5
0,52
0,54
0,58
0,63

°.65

0.25
0,35
0.41
0,43
0.45
0,47
0,54

,58

O, 25
0,29
0,35
0.37
0,38
0,43
0,49
0,54
I

e is found from (2-3-10), with n = 1/7. It is interesting to note that the effect of

the non-similarity in the'velocity and temperature fields on the magnitude of ¢, with

gas heating and cooling, is not large and is opposite in sense.
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4. 2. Velocity Distribution in the Non-isothermal Boundary Layer at a Plate with

High Re numbers

For our conditions, Eq. (3-6-7) yields

A_

(4-2-1)

or

With A¢ = 0

- - '-V_'_)- _'VV_-'_r%_1

m--[¢ --1

×(,-'¢_o_)}
For the subsonic gas flow region

l__ _/f_-, In _,,, we find
Assuming ®o-_- 1 -[- x, • 2

,_,/_,oq[,-_==¢'VL[, + _. _ 2

For the limiting cases, we have

(a) With ¢-- 0

(b) With ¢--

----.(_--.,-[,- (" d_'oql

With _b= 1, naturally, w = %.

(4-2 -2)

(4-2 -3)

(4-2-4)

(4-2-5)

(4-2 -6)

(4-2-7)
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,_5

F! s'""

y

FIG. 4.4. Effect of

non-isothermicity on
the limiting velocity
profile (M << I).
S--e =, ,_(2--®o) = _(2--t UT)

(_----_): 2-- %--_?17('_ _ I):

o_

oW))_se_eO_

o_

O.t

FIG. 4.5. Effect of gas
compressibility on the
integral characteristics
of the turbulent bound-
ary layer. J-_-_. _-_'a/_.

2_

$

I2

8

/'t 2

FIG. 4.6. Effect of

compressibility on

the shape param-

eters H ,and H'. l--

H; 2--H',

Figure 4.4 shows comparative results for calculations made with (4-2-6) and

(4-2-7), with coo = } 1/7. As can be seen from the diagram, the limiting velocity pro-

file becomes less full with an increase in the intensity of cooling of the wall.

In consideration of (4-2-1), (4-2-3) and (4-2-4), we find the limiting expressions
for the displacement--and momentum-loss--thicknesses and the shape parameter H.

Figures 4.5 and 4.6 illustrate the calculations of 8"/8, $**/6, _*A/b, H and H',
using (4-2-3), for the case _$=0.

Here _*,/g = _ (1 -- ,-)p-)d_ and H' g_ ,gH

As can be seen from the graphs, gas compressibility has a considerable influence
on the integral characteristics of the boundary layer and shape parameter H. On the
other hand, the influence of compressibility on the shape parameter H'= _*A/__'* is
inconsequential.

To an adequate approximation, the computed results can be represented by the
following formulas

(a) For q0*_ 1

H = cHo; (4-2-8)

(b) For 10>_*::>1, A_=0

H - Ho ( i ,67¢ *--0,67) ; (4-2-9)

/6_oo
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(c) For 10>$*>l, 55=#0

H = _Ho(1,675"--0,67),

where ¢- = Tw/T w.

4.3. Limiting Law of Heat Transfer for a Non-isothermal Boundary Layer on a
Flat Plate

(4-2-10)

For the similarity region of the distributions of enthalpy and concentration over

the boundary layer cross section, and for the diffusion of gases of like valency, taking

into account (2-2-1), (2-3-1), (2-3-4), (2-5-4), (2-5-5), (3-4-3)and (3-5-3), we have

(a) With 5<6r(6D) (i.e. e<l)

Ws,, --_. tit _ arcsia 1/f4 _.___1
' r s, (¢* +_7+(a'_)'

a¢ D

- arcsinv4'l"- ' ]

2 },;
ll/i o - ,) -

(4-3-1)

(b) With _ > _r (_o) (i. e. , _> I)

t, arcsin q*-- I
Vs== T_,, --,*- t [_ --V4_.di__ (4,, + A,I,)+ (l,l,),

a¢ I"_arcsin V _* -- I4 _ _"* + a¢) + (_¢),

(4-3-2)

For the case 8 = !

I [ 2 (¢* -- !) + a¢=_-2__ arcsin V4(¢*- i)t**+a,) + (_4)'

h¢ ]'. (4-3-3)-- arcsin }_4 (6"- i) (¢" + _¢) + (_+),

/6_Ai

As Spalding [164] has shown, Eqs. (4-3-1) and (4-3-2) can be approximated to
within a few percent by the following simple formula:

"s-_ Wn= [+ {,"' + '}' -}- _-_-(_*--l)s-']-'. '4-3-4)
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Assuming r = 0.9 and k = 1.4, we have

The gas flow velocity for the subsonic region is

W 2
_'s = o--[_---+, ]" (4-3-6)

The limiting temperature and concentration-distributions of the gas diffusing over
the boundary layer cross section are found from Eqs. (3-6-9) and (3-6-10), with the
condition

q/qo=}qo=x.

In particular, for the subsonic region and diffusion of gases of like valency, with
the main flow from Eqs. (3-6-8) and (3-6-9), we find

and

(4-3-7)

(,

The limiting laws of heat- and mass transfer for more complicated conditions of
diffusion and injection of an inhomogeneous gas, with chemical reactions at the sur-
face, will be derived in Chapter 5.

4.4. Limiting Law of Friction for a Non-isothermal Boundary Layer of a
Dissociating Gas on a Flat Plate

Gas dissociation processes in the boundary layer are possible in the high-
temperature region.

We shall assume that the dissociating gas is a binary mixture of atoms and mole-
cules. Using the familiar approximation of the ideal dissociating gas, we introduce

the mass concentration of atoms as a given point, _ = pa/p, and then the mass con-

centration of molecules will be pM/p = 1 - _. In this case

lt=._c,it= cp=r+ (qp,--Cpu),r+ _i_. (4-4-1)
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Introducing the specific heat of the mixture Cp Z c.]Cpi, we find

_- cpr + _i.° . (4-4-2)

where i ° is the heat of dissociation.
a

From the equation of conservation of atomic components (2-1-13), we find

(4-4-3)

where w is the mass rate of formation of an atomic component.

For the "ideal dissociating gas" we can assume [73]:

....p,_vi-.'t¢, (t +_) ,_2 •
i _W 0

(4-4-4)

where M is the atomic weight of the gas; cee

K is the dissociation rate constant.r

is the equilibrium degree of dissociation;

Converting (4-4-3) to dimensionless form, we have

P_o-_- +_v _'7 _y +'"
(4-4-5)

2 cl |

0+.)t-.---i-. '

where Ret.=t_**oL/_..; Da=£P_/(---Z-" is the Damk_Shler number characterizing the ratio of the
Worn I

time of existence of particles in the flow (diffusion time) to the chemical reaction
time.

When Da --- 0 the effect of gas phase chemical reactions on the flow in the boundary

layer is slight. In this case w = 0, the mixture of gases in the boundary layer can be

considered to be chemically inert; such a boundary layer is called "frozen-in."

If Da --* o. the chemical reaction time turns out to be much less than the time

particles remain in the boundary layer, and local thermo-chemical equilibrium will
be established at each point•

The distributions of the concentration of each component will depend only on the
local therm_lynamic parameters T and P. This boundary layer is termed "equilib-
rium." In this case the diffusion equations are not needed to solve the problem.

If the rate of the chemical process and the transfer processes are of the same
order, the conservation equations of the components must be used in their general
forms.

/64
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Let us consider the "frozen-in" turbulent boundary layer with a catalytic wall.

Then, for Sc = 1, we have from Eqs. (1-1-4) and I4-4-3)

a=_w + (a0--a'w) ¢0. (4-4-6)

If we assume that only translatory degrees of freedom are perturbed in atoms, and

both translatory and rotational degrees of freedom in molecules, we have

k k
C_= 2.5-_-_-; C_,=3.5 --m, ;

,.e D .
(4-4-7)

Taking (4-4-1), (4-4-7) and the equation of state of an ideal gas into account, we
obtain

k D
l= = (3,5 + 1,5=) _ r + = _-_-; (4-4-8)

(I + =) r. (4-4-9)
P= Po= P m--_-

Hence

p_..., r, I + =° (4-4-10)
I_ T I -t-" "

In view of (4-4-6), (4-4-8) and the similarity of the total enthalpies and velocities

in the boundary layer, we find

T 7--I-3=w , (7-.F3=, 7-_-3aw )TOI_ _1_ J_l= 7--F3= 7-[-3= _b w
(4-4-11)

! ,4 M0s
+ o 0 - =) -_-

Substituting (4-4-6), (4-4-10) and (4-4-11) into (3-3-6), we obtain the limiting
relative law of friction for the "frozen-in" turbulent boundary layer of a dissociated

gas:

i

i-3-;J

(4-4-12)

For the hypothetical case of an isothermal flow of a dissociated gas at subsonic

speeds, we have

2
(4-4-13)

/6_ 5
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where

| "_'_W •

The results of the numerical integration of (4-4-12) are satisfactorily approxi-
mated with the formula

gee ----Vtme_MooeJ_,, (4-4-14)

where

2 )'

'

I]_MOO

Figure 4.7 gives a comparison between (4-4-13) and calculations made using the
method of U. Kh. Dorrance [131]. The calculations covered the ranges of change of

Rex of 105-10 s, Mo-number from 0-4 and Tw/T w from 0.04-1.0. The relationship

between (cf/Cfo)Re and (cf/Cfo)Re** is found from the momentum equation and, for
X

the conditions being considered, is

!

Cf
(4-4-15)

As can be seen from the graph, the relative law of friction in the form

\(cf/cf°(x _ depends weakly on the temperature factor and M-number.
= 0IRe**, M, ¢

The maximum effect of gas dissociation on the limiting laws lies within _-25%. For

the case Pr T = Pr = 1 the known analogue ¢® = ¢S :_ can be used.

It should not be overlooked that in this case in the determination of the total heat

flux to the surface of the plate the coefficient of heat-transfer should be multiplied
by the drops in total enthalpy.

On substituting Eqs. (4-4-6), (4-4-10) and (4-4-11) into Eqs. (3-6-8) and (3-6-9),
we obtain the limiting distributions of velocity, enthalpy and concentration over the
cross section of a turbulent boundary layer of dissociated gas.

/6_A
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FIG. 4.7. Influence of gas dissociation
on the relative law of friction in the tur-

bulent boundary layer. Curve--computed

from (4-4-13) ; Points--computed using
the Dorrance method [131].

In particular, for the subsonic region

of gas flow, under isothermal conditions,
we have

For the limiting cases:
(a) _ =0, _ =1.0 (complete

W O

dissociation in the stream and complete

recombination at the wall):

_= (0,17_. -_-0,83) _o; (4-4-17)

(b) _ =1.0, _ =0 (complete
W O

dissociation at the wall and complete re-

combination in the flow):

w :,-o0 (I,I 7--_0,17_e). (4-4-18)

Comparison of (4-4-17) and (4-4-18) shows that the influence of gas dissociation on

the limiting velocity profile is negligible (Fig. 4.8).

/67
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FIG. 4.8. Effect of gas
dissociation on the dis-

tribution of velocities
in the turbulent bound-

ary layer. 1--Wo; 2--

¢_ = 0.5; 3--¢_ = 2.
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CHAPTER 5
THE TURBULENT BOUNDARY LAYER ON A PERMEABLE SURFACE

5.1. Limiting Laws of Friction, Heat- and Mass Transfer on a Permeable Plate

The problem of calculating the turbulent boundary layer on a permeable surface
is extremely important. Processes of this type arise in connection with the protec-
tion of machine elements from the action of high-temperature gas flows (the so-called

"pore" cooling of gas-turbine blades, rocket engine combustion chambers, etc. )
during evaporation and condensation, in the presence of chemical reactions at the

surface of heat-exchangers (burn-out of heat-resistant coating), and in the freezing
of liquids and the fusion of solid bodies.

i:tt_t f't't't t.t t tt t t't t t'
i:,1

tt

FIG. 5.1. Diagram of boundary layer on a
permeable plate.

A diagram of the turbulent bound-
ary layer on a permeable plate is
shown in Fig. 5.1. We shall consider
that the surface of the plate is penetra-
ble at all points for one component of
the flow. If gas is injected into the
boundary layer, or sucked out from it,
the openings are assumed to be small
in size but in adequate number.

The distribution of shearing stress /6__88
over the boundary layer cross section,

for the conditions being considered, follows from Eq. (1-6-15) as

btfa_+ ,+ )

For the condition Re --* co, the wall region, where _ << 1, becomes most important
for T. Consequently

_---_*, (l + b,_). (5-1-2)

A comparison between the test data [140, 168] and the values computed with for-
mula (5-1-2) is shown in Fig. 5.2. As can be seen from the diagram, the test data and
formula (5-1-2) agree both qualitatively and quantitatively.

The relative limiting law of friction for a flow around a permeable plate is
written as

/ l_ I _,!

• =/I "'_''_'' /
(5-1-3)

or

I

_,-2g/-_,_,- I. (5-1-4)

/6__9
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FIG. 5.2. Effect of gas injection on the
distribution of turbulent shearing stress

over the boundary layer cross section.
Curves computed from formula (5-1-2):

S Otll'ce

Symbol

b,

I 04ol I I er_l

o _---_ o e-- (}

The relative density _ is

always finite, and the relative

velocity co varies from 0 to 1,
and hence there exists some

value of the permeability

parameter b with which the

integral (5-1-4) has the value

¢® = 0. This value of the

permeability parameter will
be termed "critical" and

symbolized as bcrit. This

phenomenon can be identified

with displacement of the
boundary layer from the per-
meable surface.

The magnitude of the

critical permeability param-
eter is found from Eq.

(5-1-4), setting ¢® = 0:

]befit _ --- dw .

(5-I-5)

From Eq. _3-6-6) we find the limiting velocity distribution over the turbulent
boundary layer cross section

i

S V'_'I_'+d",** -.V'-_-__ (1 -- ®.). (5-1-6)

In case of critical injection

(5-1-7)

The properties of the gas injected through the wall are in general different from

those of the gas in the main flow, and therefore we shall distinguish between injection

of a homogeneous gas (M 1 = M2) and an inhomogeneous gas (M 1 # M2).

5.2. Injection of a Homogeneous Gas under Isothermal Conditions

For the simplest case of injection of a homogeneous gas under isothermal condi-
tions (_ =,1) and from Eqs. (5-1-3), (5-1-5), (5-1-6) and {5-1-7), we have

•.=(,-+)"

/70
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where COcrit
layer.

bcrit = 4,0;

-K)®o-b b 2,o=(l-- b -4- ,

(5-2-2)

(5-2-3)

2
%tit "-_ ®.' (5-2-4)

is the dimensionless velocity in the displacement section of the boundary

In view of Eqs. (1-9-4) and (1-9-5).

( V- )'I c_. In _ -
_crit = 1 27 X-; -2- (5-2-5)

Table 5.1 gives values of the shape parameter H = 5*/5** computed from (5-2-5)
for various values of Re**:

H--- (I -- ta crit) d_ mcrit )

o o

TABLE 5.1. Values of the shape parameter H at the

point of displacement

Hwith b = bo .....

Hwith b = 0 ......

.H=H,H° .....

2¸000

,53

,28

,19

10000

I ,44

I, 23

1,17

10t) 003 ] 1 O0)OOJ

,4 1.._ i ,33

,18 ,15

,18 .15

0¢

1,0

I

1

In the case of gas suction through the porous plate, we have

( b}.• .--_ 1 -]- T (5-2-6)

and

e= 1+7 "--T ®," (5-2-7)

For the limiting suction of gas (see Section 8.1), b = 4, and

¢_= _ (2--(_)).

Figure 5.3 shows the effect of gas injection and suction on the limiting profiles of
velocity and temperature. For the conditions in question, w = _. As can be seen

from the diagram, the velocity profile becomes less full with gas injection into the
boundary layer, and, with suction of gas, it becomes fuller.

/JA
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FIG. 5.3. Effect of injection and suction of gas on
the limiting profiles of velocity and temperature.

1, 2, 3, --calculated from formula (5-2-3) and _5-2-7),
respectively, for b = -0.43; b = 0.53, b = 3.07.

4, 5--calculated from formulas (5-2-3) and (5-2-7)
for b = -0.38 and b = 2.91.

Source 11811 ll811

Symbol a 0, x

Taking Eq. 15-2-3) into

account, the limiting formulas
for the displacement thick-

ness, momentum-loss thick-
ness and shape parameter H
can be derived. If we set

co = f n, then
O

+--'.)
&_= In'+ I112,, + i) i

(5-2-8)

_. __ 2n , (5-2-9)
oo crit- 2n'- t- 1'

I .&VI I
-(l- 4 ; j i.+,

o b I
_ --2-_- f 1 3n+ I"t:91. --0.43

,%

b' I • (5-2-10)
16 4n+ I '

2/I •
(5-2-11)" _crit t2n + 1) (4n q- 1) '

_4_0,8

FIG. 5.4. Comparison
between formula (5-2-3)

and the experimental

data. Curves--computed
from (5-2-3).

Symbol b. Re"_ A 8 C Source

a 1631

4.

o

b

Re..O

Ii

Re _

il

Ille _

1.31

$8_0

1.1

2530

1,25

777

2.5 I 4.89

7200 8410

2,2 4.9

2870 I 3410

illO i 12811
itaOl
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H

.=_
b b ( b

(5-2-12)

--2 I-- n+l 16 4n+i

H_crit = l +4n. (5-2-13)

Figure 5.4 gives a comparison between formula (5-2-3) and the experimental data
of various investigators. As can be seen from the curves, the limiting velocity dis-
tributions are in good agreement with the test data.

5.3. Injection of a Homogeneous Gas under Non-isothermal Conditions

The limiting relative laws of friction for the case of injection of a homogeneous gas
into a subsonic flow of gas under non-isothermal conditions are found after substituting
the expression for the density

u

-_--- $ -{- (1 -- _) _ (5-3-1)

into (5-1-3). After integrating, we have

{a) with¢<l

4 [ F(_-,)(l+_,)+_7,]' (5-3-2)

(b) withe >1

'b, -- arclg "
W' -_ arcig (_-- 1) (b, + l) (5-3-3)

As shown by Spalding [164], Eqs. _5-3-2) and (5-3-3) are satisfactorily approxi-
mated by the following simple formula:

t (_--1)]".[" {¢,, +b,)','}.+ Tb, (5-3-4)

For the critical injection parameters, we obtain from Eq. (5-1-5), taking (5-3-1)
into account:

(a) withe < 1

1 Iln ! + I/l ----_-_ )'; (5-3-5)befit- -- l -- ¢ l --

(b) with ¢ > 1

/73
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(5-3-6)

In analogy with Eq. (5-3-4), Eqs. (5-3-5) and (5-3-6) are conveniently approxi-
mated with the formula

4
_crit_ _ --

Figure 5.5 illustrates the relationship between the critical injection parameter and
the temperature factor.

8 x_

6

2

o 0.5 tp t,f 2_2.5 3.oi5 4D

FIG. 5. 5. Influence of

non-isothermicity on the
critical injection param-
eter. Solid line--com-

puted from (5-3-5) and
¢5-3-6); Broken line--

computed from (5-3-7).

The equation

•-='-(, (5-3-8)

is an adequate approximation of Eqs. (5-3-2) and

(,)'(5-3-3); where T_---_ V_"-+ i , and berit - is found

from (5-3-5) and (5-3-6).

Figure 5.6 shows the comparative results of calcu-
lations using (5-3-2), (5-3-3) and (5-3-8).

From an analysis of formula (5-3-8) we come to the
interesting conclusion that gas injection is less effective

than an increase in wall temperature, with other condi-
tions being the same.

The limiting velocity distribution over the cross section of a non-isothermal tur-

bulent boundary layer is found by substituting expression (5-3-1) into Eqs. (5-1-6) and
{5-1-7). For ¢ < 1

_z __ ac

• m-'_- a(2K +d) ' (5-3-9)

where

/7___5

For ¢ > 1

a -----(| -- _) b; d =(| -- _) _'_ J¢- _b;

c _ _V,.;

I d]e Ch-i'_-t)!(= [Va(a+d+c) +a+ T

l/'(¢- l) (! + b,,_)
arctg r "{7-V_f:%)-g _arctg l/'('_,-- 1) (! -Fb,)

V 0-o.)
(5-3-10)
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FIG. 5.6. Comparisonof formulas
(5-3-2), (5-3-3) and (5-3-8). Curve--
calculatedfrom (5-3-8).

Cal¢. from equation I (_3-_) I

In case of critical in-

jection:

Fore < 1:

Vg+(t --,)_+ V(t--0®

= II + IV2----_l e _ -V_®'_",

(5-3-11)

For ¢ > 1:

V (¢ "1)_ _=arctgV'_?--Iarctg _ + (I -- _) t_

V_-=T
2 _bcrit_ ( | -- _o).

Taking (5-3-9) into ac-

count, the integral charac-
teristics 6" and 6"*, and the
shape parameter H, can be

computed.

b
t g J 4 5 $

FIG. 5.7. Dependence of
shape parameter H on

non-isothermicity and

injection. Straight line--
computed from (5-3-12);
Points-- _ plate (¢ = 1)
[81] ; o, x--initial section

of tube (¢=0.5, 0.4)
[69].

Figure 5.7 shows the computed shape parameter H

and a comparison with the test data of various investiga-
tors. For the region ¢ < 1, the calculation is satisfac-

torily approximated by the following formula

H= H0, ( 1 -t--0,05b), (5-3-12)

where H = l+2n.
O

5.4. Injection of a Homogeneous Gas into a Supersonic
Flow

For the region of supersonic gas flow:

p (5-4-1)

The limiting law of friction for the supersonic boundary layer is found by substi-
tuting this formula into Eqs. ¢5-1-4) and (5-1-5):

(i )"dca

_= V0+b,o) [_--A+o-- (+*_ l)_'I

and for the critical injection parameter

[: Idm

bcritm _ V_ [4t-- A_--- (q**-- 1) _'] "

(5-4-2)

(5-4-3)
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Elliptic integrals are the result, and the final expressions for _ _ and bcrit

the forms:

! 2
[P 0,,, p) -- P (_,, p}l.

and

where F is an incomplete elliptic integral of the first kind:

?j --" argsin

i/ I , cps--_arcsm II_I+ "_" l'*, I + "_',

take

(5-4-4)

15-4-5)

/7___7

J !P-- I _l+lw,[ , _= arcsin• r l_l(l+i,_,l)

I_fP = 0.

and co 1 and co2 are the roots of Eq. (5-4-1) with 0o/0 = 0.

The results of the numerical integration of (5-4-2), carried out by I. K. Ermolaev

over a wide range of variation in ¢ and ¢*, are given in the Appendix. For the injection
of helium into air the relationship between density and velocity is taken from (5-5-11).

As shown by N. I. Yarygin, Eq. (5-4-2) is approximated to within _=15% by the

following formula

(5-4-6)

where

(.,-,_ V._' )'(_')'; _.= -_:=•,= V _ +, ,,V..-_,

The critical injection parameter is defined by the expression

where bcrit ¢

bcrit_ _--- b W
crit_ M'

is determined from formulas (5-3-5) and (5-3-6), with

?= _t_'.

_5-4-7)
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FIG. 5.8. Influence of compressi-

bility and non-isothermicity on the
relative law of friction. Curve--

computed from (5-4-6); Points--

computed from (5-4-4) and (5-4-5)
in the M-number range from 0-12

and with A ¢ from 0-30.

T. - I

b CJ t. calc.

3

2 /
!

/
0 I

/
/

bcrlt.

3

FIG. 5.9. Compari-
son of calculations of

the critical injec-

tion parameter from

(5-4-5) (ordinate) and

(5-4-7) (abscissa) in

the M-number range

0-12 and with A ¢
from 0 to 30.

ppxox.

Figures 5.8 and 5.9 compare the results as computed from Eqs. (5-4-4) and
(5-4-5) and from the approximation formulas (5-4-6) and (5-4-7).

Subs*it-lting (5-4-1) into Eq. (5-1-6), we obtain the limiting velocity profile for a

supersonic gas flow over a permeable plate:

|

_ dw = _F¢_(l--b,), (5-4-8)(l + btw) [_---&q_-- (_* -- l) w']

and for the section with critical injection

For an adiabatic plate (A ¢ = O) we have

1/'_-+ V_* -- (+*-- t) ,_'
m

(5-4-10)

5.5. Injectioli of a Foreign Gas

With the injection of a foreign gas through a permeable plate, under the conditions

being considered (Le = Pr = 1; dP/dx = 0, iw const, Pw const), similarity must

exist between the distributions of total enthalpy, velocity and weight concentration of

injected gas ever the cross section of the boundary layer, i.e.
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i° -- iw P'-- p'w (5-5-1)
i.. - iw __?. _?w = ®'

where p' is the weight concentration of injected gas.

If the concentration of injected gas in the main flow is zero, then

i'-i. --i -¢

The gas constant for a binary mixture of gases is

R --,

= p (_-- I) nu I, (5-5-3)

where R = Ri/R0; R i is the gas constant of the injected gas; R 0 the gas constant of the
main gas. For a binary mixture of ideal gases (since dP/dy = 0) we have:

po_ R T
p Ro .To"

Hence, taking into account (5-5-2) and (5-5-3), we find

To •

The mass balance of injected gas at the wall is written as

In view of (5-5-2),

Hence

i. =--pp. (-_-). + p,.=_..

(5-5-5) and (5-5-6), with Pr = Le = 1, we have

(5-5-2)

(5-5-4)

(5-5-5)

(5-5-6)

"7 b I

_'_ = L_ b," (5-5-7)

p._ r [1_!" b,T--T;. r-_w, _-- D 0 --®)]. (5-5-s)

(5-5-9)

(5-5-1o)

Since in the absence of chemical reactions

T Cpol Cpo iw - +-).- (+-- ,)..]
and

cp _, / c., )-c-_-_=l -, +---_,_-c-_- I. 0-=),

then, for the conditions stipulated, we have
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where c = Cpl/Cp0.

bl
bl

P' t + _ in- l) it-- o)

-i- b,

(' '

For gas mixtures of like valency, R = c, we have

IW •(,. -+)°_(+._,)°.
or

(5-5-11)

(5-5-12)

/81

_------),- (_,-_*) --(;* -- D-',

where Ct* - Po/Pw •

Values of ¢1 for some processes are compiled in Table 5. 2.

(5-5-13)

TABLE 5.2. Value of ¢i

Boundary Layer Characteristics qk

Homogeneous non-isothermal

Non-homogeneous isothermal

Non-homogeneous, mixture of

gases of like valency, non-
isothermal

b- twit.
bl " __

t + F_:, (R-- _)

Thus all limiting formulas derived for the injection of a homogeneous gas under
non-isothermal conditions can also be extended to the injection of a foreign gas if we

substitute ¢1 = Po/Pw for ¢ in the formulas.

Specifically, for the injection of a foreign gas under isothermal conditions, we
obtain from (5-3-5) and (5-3-6) a relationship between the critical injection parameter
and the ratio of the molecular weights of the injected gas and the main gas flow. With
critical injection ¢1 = _. Therefore for R < 1

'+ V (5-5-14)
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andfor R > 1

(5-5-15)

The approximation formula is of the form

_crit=="_- 4
l --2 "

-_-+-F_
(5-5-16)

From Eqs. (5-5-14) and (5-5-15) we see that the critical injection parameter in-
creases with the molecular weight of the injected gas.

As Spalding [164] has shown, Eqs. (5-4-2) and (5-4-3) may be approximated when
= c by the formulas:

t +/tb. "_ (1 "t- b,_,')"2}''t'. _ [-_- {(_)':2 ( ,¥_:)--

-- -_I ''+/)b')-- }l-';.+_(+" l)+ oe_, _+b, )*

(5-5-17)

4
befit _ --'_ l 2 • (5-5-18)

-_-_" + -2-/_

5.6. Limiting Law of Friction for the Non-isothermal Boundary Layer of a
Dissociated Gas on a Flat Permeable Plate

For the "frozen-in" boundary layer of a dissociated ideal gas, taking (4-4-10) and
(4-4-11) into account, we have

,+,w]N" i+"_ 7-{.-3a _+ +3= 7+3a 'b ¢e

,,Mo'}-'.+ g 0 -.=,)

(5-6-1)

Substituting (5-6-1) into (5-1-3), and using (4-4-6), we obtain the limiting law of
friction for the conditions being considered:

I Vt { 4-'b-3 (I -'1-=o)[q,=-'t-(l--'b=)w] }

((7 Jr 3_w) J/-I- [7 -{- 3% -- (7 "l- 3=w) _l caJr ,a (1 -- (5-6-2)

--m)1,4M_}'/2 (I +b,=) '/= "

The criticalinjectionparameter is found similarly from Eq. (5-1-5):

/82
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bcrit _

F I

-2

4 -l-3() 4-%) [_ 4-(t--._) (o) dco
(5-6-3)

For the hypothetical case of the isothermal dissociation of a subsonic turbulent
boundary layer (¢ = 1), we have

P

-g- =. {,I,.4--(l - +_,)_I -' (5-6-4)

Consequently, for Ca < 1:

4

(I-,I,¢,) '/_ (x +b.) v2 +b'/_ ]';In (1 --,I,. )_/2 4- (b,',_,)l':
:5-6-5)

_,. =,_--_.[,.'+ (,-,.),:,]'i :_.--_._ j' (5-6-6)

and for ¢_ > 1:

' I " 1"' r""l"'}:IF_ = "b, (_.-- I) arctg r. (_._ i) (i -F b,) - arctg [_--_-_- I j (5-6-7)

l f 2-,I,,V (5-6-8)

In the Spalding approximation

{+ ' }v_, : [¢,'n + (I+b,) 'n l' +"-_-b, (_--I) ; (5-6-9)

4

bcrit_ = I/3+ 2/34, " (5-6-10)

It follows from Eq. (5-6-10) that gas dissociation may exert a marked effect on the

limiting critical injection parameter. In particular, with ¢_ = 0.5, bcrit _ = 6, and
with ¢ot= 2.0, bcrit _ = 2.4.

Formula (5-6-10) is conveniently expressed in the form

where bcrit

o_=0

bcrit¢_ 3

_.crit._ I+ 2_,
m._O

is the critical injection parameter in the absence of dissociation.

(5-6-11)

/8__5
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befit.-

FIG. 5.10.

_ zq

Effect of gas
dissociation on the critical

injection parameter.
Curve--calculated from

(5-6-11) ; Points--calculated
from (5-6-3) in the M-num-

ber range of 0-10; ¢ from
0.1-1.0, a from 0to 1,

o

aw from 0-1.

Calculations show that formula (5-6-11) is more
universal and may be extended to the flow of a com-

pressible gas under non-isothermal conditions if the

effect of these parameters on bcritoo is accounted

or=0

for in accordance with (5-4-7).

Figure 5.10 presents a comparison of calculations
made with (5-6-11) and (5-6-3) in the M-number range
0-10, ¢ from 0.1-10. The limiting law of friction may

be approximated by the following simple formula over

rather broad ranges of M, _b, Ca, d ° and c_ :W

Wol _t_YM_ I bcrita °
= • -- , (5-6-12)

where

( _2 ; w.= v' ¥i
• +' ,

"- =VT©
_o_- r - ._ :
I_ _

FIG. 5.11. Effect of non-isothermicity,

compressibility and dissociation on the
relative law of friction on a permeable

plate: Curve--calculated from (5-6-12);
Points--calculated from (5-6-2).

Figure 5. 11 shows a comparison of the

calculations using (5-6-2) and (5-6-12). As
can be seen from the diagrams, the results

with the exact and approximate formulas

are in good agreement in the subsonic re-
gion. Formula (5-6-2) generalizes the
computed results in the supersonic region

somewhat less satisfactorily.

Taking (5-I-6), (5-1-7) and (5-6-1)

into account we can derive the limiting

velocity distributions over the cross
section of a dissociated turbulent boundary

layer of gas on a permeable plate.

M. I 0 2 _" 6 I0

*-_" 0 @
,=0,2 A •

/8_ 5

64



5.7. Limiting Laws of Heat- and Mass Transfer for the Turbulent Boundary
Layer on a Permeable Plate

The limiting relative laws of heat- and mass-transfer, in the general case as
shown in Chapter 4, are in the form

] (5-7-1)

= I d_ u (5-7 -2)

whe re

|1e

_5-7-3)

(5-7-4)

If there are no chemical reactions or sources of heat or matter in the boundary
laver, formula (5-5-11) remains valid for the gas density. Then the limiting laws of
heat- and mass transfer, and the limiting distributions of total enthalpy and concentra-

tion will be given by Eqs. (5-4-2), (5-4-3), 15-4-8) and (5-4-9) except that b and
will appear in place of w.

In more complicated cases, with chemical reactions inside the boundary layer, it

is convenient to introduce the weight concentration 5". of the individual chemical ele-
ments.

Then, with similarity of boundary conditions, and with Pr = Pr T = Le = Le T = 1,

the similarity of the distributions of velocity, total enthalpy and generalized concen-
tration is maintained.

 5-7-5)

However, in this case difficulty arises in deriving the gas density formula.
Strictly speaking, to estimate the concentrations of all gas components at a given point

we must resort to the equations of chemical kinetics, which markedly complicates the
calculations. In some cases, estimates for two limiting cases are useful: equilibrium
and "frozen-in" boundary layers. The case of the "frozen in" boundary layer of a dis-

sociated gas has already been considered in Section 5.6, and the formulas derived

in this section can be extended to the boundary layer with chemical reactions at a cata-
lytic wall. In practice, the conditions when the chemical reaction rate in the boundary

layer is infinitely large compared with the rate of diffusion of the components is also

/86



pertinent. The reaction zone can then be considered to be some surface (the flame
front) at which chemical reactions also occur.

We shall assume that the injected gas reacts with the oxygen that diffuses to the
heat transfer surface, in which case a stoichiometric relationship is established at

some section (flame front) that determines the weight concentration of injected gas:

(5-7-6)

where K is the amount of oxidizer per unit mass of fuel.

The boundary layer will be divided into two sections by the flame front--the fol-
lowing conditions are satisfied for these regions.

jet=0,

_'_Ee jCo= l --(1 nt-/0 E, (5-7-7)

I%_= (l + K) _;

_>ec leo=0,

lop, = (' +-_)(, -- _,

(5-7-8)

where c is the stoichiometric concentration of injected gas; c is the weight concen-
c pr

tration of combustion products; c T is the weight concentration of injected gas; c o the

weight concentration of the main gas.

The corresponding formulas for the molecular weights of the mixture have the
following form:

Forc < c
pr.c

I i--(I +K)e (z+ K)a .
(5-7-9)

Forc > c
pr.c

!

Mr -_" Mpr

(5-7-10)

In determining the enthalpy of the gas mixture it is convenient to assume that the

enthalpy of the main gas'and reaction products is zero at absolute zero; the enthalpy

of the injected gas is assumed to be positive and equal to iTo. Then

l -_-(_oCvo -_ cpr Cppr "_-c,rCpr) T -{- Cr iro" (5-7-11)
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Thus, _r c < c
pr. c

and for c > c
pr.c

l={i I --(1 -t- K) el c_o + (1 -t-K)_Cp_} T,

! " t I .

(5-7-12)

(5-7-13)

Substituting 15-7-9), (5-7-10),

for e< c
pr. c

and for c > c
pr. c

15-7-12) and (5-7-13) into Eq. (5-5-4) we have-

p {I--0+K)_ _ +

× {[, - 0 + K)-eI+-_ 0 +_Oe}-' ,.'L-,

(5-7-14)

('_r 1 \ M,IPc__ Me I - l 1_ (I"J"K-)(I--¢-')'M--_ lT- [('+_)'-_
,. -,.+[(,+__),_,1-,_-'

{ o}
X l.

Making use of Eqs. (5-7-5) and (5-7-7), we get the w-dependence of p. On sub-
stituting this relationship into Eqs. (5-1-3), (5-7-1) and (5-7-2), we find the limiting
laws of friction, heat- and mass transfer for the turbulent boundary layer with chemi-

cal reactions. Spalding [226] has evaluated these integrals numerically for the case of

injection of hydrogen and air.

(5-7-15)
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CflAPTER 6

INFLUENCE OF A LONGITUDINAL PRESSURE GRADIENT ON THE

LIMITING LAWS OF FRICTION, HEAT- AND MASS TRANSFER

6.1. Limiting Separation Parameters of an Isothermal Boundary Layer on an
Impermeable Surface

In the case of flow over a curved surface, the flow velocity at the outer edge of
the boundary layer varies along the contour, and consequently dP/dx _ 0.

A convergent flow, when dP/dx < 0 differs from a diffusor flow, when dP/dx > 0.

In Section 1.7 the conditions for separation of a turbulent boundary layer from a

surface with diffusor flow were considered and the effect of a longitudinal pressure
gradient on the stability of the viscous sublayer was analyzed. Let us derive the

limiting formulas for the separation parameters. We can write the following condi-
tions for the separation section of a two-dimensional, isothermal, turbulent boundary
layer of incompressible fluid at an impermeable wall:

c_-O, p--po, I_--o. (6-1-i)

Substituting these values into the Prandtl formula (1-5-4) and integrating over the
cross section, we obtain

I_crlt

(6-1-2)

The distribution of shearing stress over the boundary layer is defined by Eq.
(1-6-14), which can be written as

• -- ?._ -_-.*_, _. (6-1-3)

where

%@ = l- 3e,+ :_, _,(e)= (I --e)'.

Taking (6-1-1) into account, we find

_ _ _,__,_= --f _.._). (6-1-4)

.. _1"* deet
where I-_ _-_-,--&-- is the shape parameter, which is independent of cf.

We substitute rcrit into (6-1-2) and find

t
• a \ '/9 ("

,_crit crit
(6-1-5)

/s9

/9o
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Assuming¢0= 1 and _ = 1, we find the critical value of the shape parameter from
(6-1- 5):

.! a [ ,

]crit f' a -- (6-1-6)
1 /exit

l,crit

With Re-_oo, _1-_ 0, w I- 0

a 'a ]:';
/crit l_k Icrit

(6-1-7)

a_ " I /crit
0

o

¢6-1-S)

Assuming that the distribution of mixing path length over the boundary layer cross
section does not depend on the longitudinal pressure gradient and is defined by (1-10-1),

we have from Eq. t6-1-8)

In(2_ + 2}+ 4}÷ l)

• -- In(2_g-÷ 5) (6-1- 9)

This same equation is obtained from (3-6-1), taking (6-1-4) into account. Accord-
ingly

=[, ]-,(-- / _")crit 2 _-, In (2 V'6-+- 5 ) (6-1-10)

With the assumptions adopted, it follows from (6-1-9) and (6-1-10) that the limiting
velocity profile in the separation section of the boundary layer does not depend on
empirical turbulence constants. But the limiting critical value of the shape parameter
f depends on the constant x . With x = 0.4, we have, for the conditions being con-

O o

sidered (T w = const, jl = 0, Re -- oo):

_-- 1_ =0,062; kTJcri t :0,3;

a--)¢rlt =0,16; /'_rit: 1,87; ]crit = _0,01.

(6-1-11)

The velocity profile (6-1-9) _s quite well approximated by the power-law rela-
tionship

(D -_- _0,4_. (6-1-12)
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,. °
, i
2

I

FIG. 6.1. Compari-
son of the limiting
velocity profile at the
separation point with
experimental data: 1-
calculated from

{5-1-9) ; 2--calculated
from the formula

w = _ 1/7; O--Niku-

radze's tests [188] ;
• --tests of A. I.

Leont'ev, A. N.
Oblivin and P. N.

Romanenko [66].

From (6-1-11) it follows that the shape parameter f
also maintains a finite critical value with Re-numbers

approaching infinity, while the critical value of the Bury-

Loitsyanskiy shape parameter (1-" = 2f/Cfo ) tends to infinity
as Re -- oo.

Figure 6.1 gives a comparison of the limiting sepa-
rated velocity profile [Eq. (6-1-9)] with the tests of N.
Nikuradze [188] and A. I. Leont'ev, A. N. Oblivin, P. N.
Romanenko [66]. As can be seen from the diagram, the
limiting velocity distribution and the test data are in
satisfactory agreement for finite Re-numbers. A com-
parison of the critical limiting values of the shape param-
eter H with the test data is of interest. According to

I. Nikuradze's tests, Hcrit = 1.8; according to E. Grusch-

witz. Hcrit = 1.9; in the paper by D. Khurai, Hcrit = 1.9.

These data all correlate quite satisfactorily with the
theoretical limiting values. However, tests exist [202,
66] in which the measured values of the shape parameter

Hcrit reach 2-2.6.

This deviation from the theoretical value may possibly
relate to surface roughness or other factors not allowed
for in the assumptions adopted for the functions l(y) and
r (y).

In analogy with Section 1.7, we estimate the parameters of the viscous sublayer in
the separation section of the turbulent boundary layer.

The velocity distribution in the viscous sublayer in the separation section of the
boundary layer is defined by formula (1-7-3).

,o= -- T f it ka,,) -,.- .. (6-1-13)

We shall assume that (6-1-9) also describes the velocity profile in the turbulent
portion of the boundary layer with finite Re-numbers. Figure 6.1 serves to provide
some basis for this assumption. It is clear that the assumption is more nearly
correct as Re becomes larger.

In case the velocity profiles computed from (6-1-9) and (6-1-13) intersect, _1 crit
and w_ crit are, to a first approximation

From this

2,84 .
_crit _ l_e'*o,., '

1,57
Illacri t ,-_

R_e sO,|1 •

Re,crit =-=®,crit _,crit (_-_) crit
Re'* _ 28.

(6-1-14)

(6-1-15)

/9_A2
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As was demonstrated in Section 1.3, the number Re,---- ('y,0w,
\ _O---_-,tU=y' may be taken as

a measure of the thickness of the viscous region near the wall. With dP/dx = 0, the
magnitude of l_e 1 is l_e 1 = 772 = 134.

10

For the separation section of the turbulent boundary layer we have

_e,crit = --,crit _,_) crit _e'"_3 _crit (6-i-16)

Taking (6-1-11) and (6-1-14) into account we find that l_e 1 _ 57, i.e. the Re 1-
number is more conservative than Re with respect to the action of a longitudinal pres-
sure gradient.

In the region of gradient flows we note that the condition _te 1 = const = 772 is equiv-
10

fy
alent to the Szablewski condition [209] introduced earlier-- -7- V +)y=_. = const = 7710-

We thus obtain the limiting values of all parameters of the turbulent boundary layer of
incompressible fluid in the separation section.

/9_33

6.2. Law of Friction of an Isothermal Boundary Layer on an Impermeable Surface

with dw0/dx _ 0

The velocity profile in the turbulent core of an isothermal boundary layer on an

impermeable curved surface, with (1-5-4) and (1-6-14) taken into account, has the
form

L

- 2 + T (6-2-I)

where (P0 (_) a_d (p_ (_) are functions in the approximation of the distribution of shearing
stress over the boundary layer cross section.

Specifically, for a third-order polynomial, we have:

@ =

2 a' dw°_ 2 a

11.-- ;¢,° w,. a_ ¢,. a*" f"
(6-2 -2)

For the velocity distribution in the viscous sublayer we h_ ve the equation

a cf 8

"-- Ree* (_-;) (_-- _ -- _;-;, _). (6-2-3)

With the thickness of the viscous sublayer being defined by the stability criterion in
t'-e form

y' dw. ) (6-2-4)
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we have from (6-2-3)

¢_ O° .I,E: _-_ Re, (6-2-5)

k_ a..;

At the boundary layer separation point ¢ = 0, and condition (6-1-16) follows from

(6-2-5).

Setting} = landco =1 in Eq. (6-2-1), and } =_l and co =col in (6-2-3), we have
the following system of equations:

I

"
E,

(6-2-6)

a _e** /IF "to _ _ I ¢t, Au_:"l', (6-2-7)

-- 2 *-- 2
(6-2-8)

To determine the law of friction ¢, we add to this system the relationships used
earlier

+_-_0 (}); (6-2-9)

!

a*-_{, _ (I-®)._ (6-2-10)

=..p.._.=. (2,5 In Re*"* --[--3,8) -'.2
(6-2-11)

The stability criterion of the viscous sublayer i_e 1 is defined by the formula

(6-2-12)

to a first approximation.

The parameters in the boundary layer separation section are defined from the sys-

tem of Eqs. (6-2-6) - (6-2-12), with the conditions _'--0 and Ao= Acrit.

The results of a numerical solution of the system (6-2-6) - (6-2-12) obtained by

A. V. Fafurin on the "Minsk-22" computer, using an iteration method, are shown in
Figs. 6.2, 6.3 and 6.4.

It should be noted that negative values of A, yield an unstable solution, and the
iteration process diverges; therefore only the diffusor flow results are shown in the

figures.
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FIG. 6.2. Influence of the

longitudinal pressure gra-
dient on the relative law
of friction. 1--Re** = 2

× 103; 2--Re** = 104; 3--
Re** = 105; 4--Re** = 10 _.
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FIG. 6.3. Influence of longitudinal pressure gradient
on the relative thickness of the viscous sublayer (a)
and on the dimensionless velocity at the boundaries of
the viscous sublayer (b). 1--Re** = 2 × 103; 2--Re**
= 104; 3--Re ** = 5 × 104; 4--Re** = 105; 5--Re** = 106.
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FIG. 6.4. Influence of various factors on the

characteristics of the boundary layer, re)-
influence of longitudinal pressure gradient on
the integral characteristics of the boundary

layer: I--6"/5_ = 0; 11--6 /6t = 0; III--

H/Hx = 0; 1--Re** = 104; 2--Re** = 106; (b)--

influence of Re**-number on the shape factor
of the separation of the turbulent boundary

layer (A° erit).

As can be seen from the

figures, a positive longitudinal
pressure gradient (or a negative
longitudinal velocity gradient) sig-
nificantly affects all characteristics
of the turbulent boundary layer.

It is clear from Fig. 6.4a that
Re** exerts a weak influence on the
dependence of the shape parameter
H on Ao/Aoerit.

The calculated results can be
approximated in the range of Re**
from 104-106 by the expression

.=,,.(,
(6-2-13)

where H is the shape parameter
o

with A0=0.

For the law of friction we find

k A,crit'j "

(6-2-14)
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6.3. Law of Heat Transfer in the Diffusor Region of a Quasi-isothermal Turbulent

Boundary Layer at an Impermeable Wall

The presence of a longitudinal pressure gradient essentially disrupts the similarity
between the frictional processes and heat transfer in the boundary layer. In this case

the properties of the heat transfer are quite conservative with respect to the longitudi-
nal pressure gradient, which has already been noted in comparing the distribution laws

for shearing stress and density of heat flux over the boundary layer cross section. As
seen from formulas (1-6-14) and (2-5-4), with the adopted assumptions the heat flux

density in general does not depend on the longitudinal pressure gradient, while the dis-
tribution of shearing stress depends significantly on the magnitude of f.

l
@

i

6 'D

FIG. 6.5. Distribu-

tions of shearing

stress 2 _/po w2_ (1)

and heat flux q/qw

(2) at the boundary

layer separation

point.

The distribution of shearing stresses and heat flux over

the boundary layer cross section is shown in Fig. 6.5 for the

separation region. Let us estimate the intensity of heat
transfer in the separation section of the boundary layer for

the conditions Pr = Pr T _ 1 and 5 T < 5. In this case we can

take IT = 1, and we have from (2-1-12):

Assuming _ = _o' and using (1-10-1), we find

8w o'_
St _ o,I_' b-V _-

(6-3-1)

,6-3-2)

Substituting the limiting velocity distribution (6-1-9) into

(6-3-2) and integrating, we obtain

|

St _ 0,0688 e'er = 0,0295_,_ t --I,f a \o.o"

- ,-
(6-3-3)

Here

(6-3-4)

Neglecting [ (5/52_i]0.43 in comparison with unity, we have

o.o29,s_o._
Stcrit _ | +:0.0295 (a/a..)c_t_.l._Re ''

(6-3-5)

On substituting 5"*/5 = 0.16 and _! from (6-1-14) into (6-3-5), we find

0,046
Stc_t _ (1 "l- 0,7IRe*') ',I

(6-3-6)
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Taking St 0 = 0.0128 Re **-°" 25, we obtain

Stcrit 3,5
"_ _ Re'*e't,Jr-O.7Re'*'. '" (6-3-7)

From (6-3-7) it follows that the ratio Stcrit/St 0 is close to unity in the Re** range
from 3 × 10 3 - 10 4.

With an increase in Re** the critical value of the Stanton number becomes less

than St 0.

ur s
tJ 8'

Oo ¢_)o o o

FIG. 6.6. Influence of

longitudinal pressure
gradient on the law of
heat transfer according
to the data of reference

[66].

Thus the theoretical estimate shows that the law of

heat transfer does not depend essentially on the longitu-
dinal pressure gradient up to the boundary layer separa-
tion point for the practical range of Re**. This important
deduction is in quite satisfactory agreement with the ex-
perimental data in Figs. 6.6, 6.7 and 6.8. It is clear
from the graphs that the St-number and the temperature
profile are almost unchanged with a substantial decrease
in coefficient of friction and a sharp deformation of the
velocity profile with an increased positive pressure
gradient. Nonetheless, it follows from this theory that
as Re** -- oo the St-number, although slowly, tends to
zero. This tendency is also observed in tests.

/98
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Similar conclusions regarding the effect of a longitudinal pressure gradient are
also easily arrived at for the law of mass transfer.

_T

FIG. 6.7.- Influence of a longitudi-
nal pressure gradient on the tem-
perature distribution over the
boundary layer cross section [66].
Curve--calculated from the for-

.1/7
mula 0 = _T "

t(Neo*)* tJ.l_

Symbol
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FIG. 6.8. Influence of a longitudi-
nal pressure gradient on the veloc-
ity distribution over the boundary
layer cross section [66]. Curve--
calculated from formula co = 41/7.
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6.4. Influence of Non-isothermicity on the Separation Parameters of a Turbulent
Boundary Layer from an Impermeable Surface

The velocity distribution in the separation section of a non-isothermal layer at an
impermeable wall, taking (1-5-4) and {6-1-4) into account, is defined by the equation

" b

(6-4-1)

In the limiting case when Re--- =, 41--o, Col--o, fl --o, we have

| * 2

0

_6-4-2)

With p = Po we obtain (6-1-10).

Thus, the ratio of the limiting critical values of the shape parameters for non-
isothermal and isothermal flows is defined by the formula

/iO0
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(6-4-3)

The value of this integral, with a constant coefficient of non-similarity of the

temperature- and velocity-fields, has been calculated in Section 4.1. With a gradient
flow, in the general case, e = e(_). Thus with an isothermal flow the velocity profile
in the separation section is defined by formula (6-1-9). At the same time, in the Re-

number range to 10 4 , the law of heat-transfer is almost independent of the longitudinal

pressure gradient and n T = nTo = 1/7.

For these conditions

a-_°', (6-4-4)

where e is the value of the non-similarity coefficient of the temperature- and velocity-o

fields with dP/dx = 0.

As was shown in Section 4.1, the magnitude of e depends weakly on the value of the

integral in (6-4-3). In addition, as Re** --* _ and Stcrit _ 0, the non-similarity

between the frictional processes and heat transfer is reduced. If we take for these
conditions e = e = 1, we have*

o

(a) For a subsonic gas floW:

7"-g--- I 2

(..._.._..__.V) c_to YT+
l (6-4-5)

(b) For a supersonic gas flow:

lie°; l)crit l [ 2(_° -- I) + 5_

(a$_0 _'_--i arcsin }/4(_._l)(,._r._)t(5._):
c_to

A_ ]'.V'4 (_* -- x) (_" ÷ a_) ÷ (a_):

(6-4-6)

/101

Equation (6-4-6), as shown earlier, is quite closely approximated by the formula

[+ 1i k-- !._4_ _6-4-7)a = (('._)"2 + ; )' + -K'r T

(_ 0crit,

* Equations (6-4-5) and (6-4-6) were first derived by L. E. Kalikhman [36], but

not as limiting equations.
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Takingncrit into account, as foundearlier, wecometo the limiting velocity
distribution:

!

dtt). (6-4-8)

For subsonic velocities:

_-- llf_-- (¢_--- _) P."I' (6-4-9)

With ¢ = 0, w = }0.86; with ¢ -- oo, w = }0.43 . (2- }0.43).

For supersonic velocities:

£ It" 2(¢°- t)+ _
I_._ 2(¢°2 ) SiniLarcsln E

-- ,tcdn-_--j _. • + arcstn--E j 2 (¢*-- I)

(6-4-10)

where E ==V¢ (¢" -- t) (¢" + A¢) + (_¢):.

Figure 6.9 illustrates the effect of the temperature factor on the limiting velocity
profile at the boundary layer separation point, with subsonic flow. But here we cite
the curves for the case of an adiabatic supersonic gas flow with ¢*= 6. As can be seen

from the graph, the temperature factor rather weakly distorts the velocity profile in
the boundary layer.

Figures 6.10-6.12 present values of the critical parameters fcrit' Hcrit' and

(,5/6 **) crit as functions of the temperature factor ¢ for subsonic velocities. Hcrit

changes almost linearly as the temperature factor increases. As can be seen from

the graphs, cooling of the surface (¢ < 1) improves the stability of the boundary layer
to separation in the case of diffusor flow. With surface heating (¢ > 1) the stability of

the boundary layer to separation is lowered. As seen from the graphs, the region of

existence of supersonic nonseparated flow, with dP/dx > 0, is strongly limited in
supersonic gas flows. Figure 6.14 shows the dependence of the shape parameter on
the non-isothermicity and compressibility. The results of computing the critical

limiting values of the shape parameters (Figs. 6.10-6.14) can be quite closely

approximated by the following simple formulas:

(a) For the subsonic flow region:

Hcrit lcrit = __ ... for ¢ < I : /H---'_-ts" = ¢; fcrit.

!Hcrit I .32 fcrit I

Hcrit. = I +H--_t._*-l): lc--_-_ "T for ¢>1;

(6-4-11)
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FIG. 6.9. Influence of heat-transfer on the limit-
ing velocity profile at the separation point. 1--¢*
= 1; _ =0.25; 2--¢* =1, ¢ = 1.0; 3--¢* = 1; ¢
=2.0;4--¢*=6, ¢=6.0.

FIG. 6.10. Effect of non-isothermal conditions

on fcrit (M << 1).

FIG. 6.11. Influence of non-isothermal conditions on the shape parameter Hcrit
(M << 1). a--cooled wall; b--heated wall.

FIG. 6.12. Influence of non-isothermal conditions on the momentum-loss

thickness in the separation section of the boundary layer (M << 1).
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U
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6 r i:ll,

_7 iiil!
Jill,

V_£]l[li i

! 2 J _ $

FIG. 6.13. Effect of compressibility and
heat-transfer on the separation param-
eters of the boundary layer: _-a,-,0: _-_
_-0: 3-- 3,_:-'--0.5: 4-- 3_---I.0: 5-- 3,¢ -]--I.5: 6-- _¢-

-2 O: 7 -- ,_,l_--3.0;, 8 - _:---40: 9- A_t---6 0", I0-

_¢--=, o.
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FIG. 6.14. Effect of compressibility

and heat-transfer on the shape

parameter Hcrit. t-Ai-i- 2 At-e J-As
----I: .t -- Ai---_.. $-- Ai---4: I--&qP----_ 7-- &t----4L

03) For the supersonic region:

Hcrtt = 2,4i_* + 1,38a'_ - O,S2 f=_ ._ <_0; _. (6-4-12)

Icrit_critl =. i*- ,." .'fox' ._tI.O.. f

6.5. Joint Influence of Longitudinal Pressure Gradient and Transverse Mass __ow

As was demonstrated above, a longitudinal pressure gradient and a transverse

mass flow at the surface of the body substantially affect the laws of friction and heat
transfer and, under certain conditions, the boundary layer may be displaced from the

wall. With the joint action of these two factors the problem is considerably more

complex.

D. N. Vasil'ev [18] proposed a derivation of the limiting laws for this case, using

the Van Dyke perturbation method [19].

Equation (3-6-2), together with (1-6-6), can be written in the form (for /7 = 0 and

p = const) :

or

r} J l--llwhere --, J ----_.

+ +,.,.l
+'-',,.'}

(6-5-1)

In this way, if we take into account the expressions for _l, _°2 and _3, the probl,,m
reduces to solving the integers-differential Eq. (6-5-1). with boundary conditions

Ii---_O, ®----'0; }_---_ I, ®=1. (6-5-2)

With Re --- _, Cfo/2 --- 0, and Eq. (6-5-1) takes the form:

(6-5-3)

This equation is not able to satisfy the boundary condition _ -- 0, ¢0 = 0.

Following Van Dyke, we introduce inner and outer solution regions and expand this
solution into a series in the parameter _.----_r_.

/10._..44
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The solution for the outer region is represented as

(_ we _ 0 n= m ?,. (6-5-4)

Substituting this expression in (6-5-1) and equating terms with like exponents in _/0, /10___J

we obtain (with an accuracy to within 3'o) the differential equation

with boundary condition _ = 1 with w = 1.

Here WOois the outer solution of zero order in T0.

Integrating (6-5-5) over }, we have

I

!

For the inner region we introduce a new inner variable oJ0
sent the solution in the form

(6-5-5)

(6-5-6)

= 1 - yoDo, and repre-

to ,_._. (6-5-7)

We substitute this relationship in Eq. (6-5-1), equate terms with like powers of

_/0, and obtain (with an accuracy to within _0), the differential equation

with boundary condition co 0 = 0, ¢o = 0.

Here _o_ is the inner solution of zero order in 3'o-

With _ -- 0, q_t -_ 1 and _2 -* w, and hence

d_-- o

i
Taking the boundary conditions into account (w 0 = 0, w 0 = 0) we obtain

#;= I,_ ®.'-t- b 02

The identical result was found earlier (Section 5.2) for the case of the injection of
a gas with a smooth plate in the flow. In this case the relative law of friction (¢) is as

yet a free parameter, and it is defined by correlating the solutions for the inner and

outer regions.

(6-5-8)

(6-5-9)

(6-5-10)
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We usethe principle of limit stitching of solutions formulated by VanDykeas
follows: "Theinner limit of the outer solution is equalto the outer limit of the inner
solution," i.e.

g(1)= (0) (6511)

Then, from (6-5-6) and (6-5-10), we hace

(6-5-12)

In essence we have found the limiting relative law of friction with the joint action of

a longitudinal pressure gradient and a transverse mass flow. In similar fashion, using
the additive method [18], a composite solution of zero order in _0 can be set up in the

entire region.

Following Van Dyke, we can write

{ o4 J--®°(O)
_-- '-- ° ° (6-5-13)

• <+.,_®,.(,).
C

Here w 0 is the composite solution of zero-order in _/0.

Consequently

b 2

6

(6-5-14)

Eliminating ¢ using Eq. (6-5-12), we have

!

®01

(6-5-15)

It can be seen from (6-5-15) that the solution consists of two parts: a singular part

[( b'_--b,lw0 I -- -C]-_-_-w j, entirely concentrated in an infinitely small region around _ = 0,

and a regular part, in the interval 0 < _ < 1.

With Re--oo, w0--- 1, and, for all _ > 0

(6-5-16)

/106
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If the function _o3 does not depend on perturbing factors, from Eq. (6-5-16), taking
c

w 0 = 1 with _ = 1, we obtain the limiting relative law of friction in the form

(6-5-17)

where

b

Thus the relative law of friction does not depend on a specific form of the function

q_3. The form of @3determines the parameter Acrit with a given injection parameter b,

or the critical injection bcrit with a given shape parameter A.

It should be noted that the functions q_l, ¢2 and _P3 depend implicitly on the perturb-
ing factors by way of the velocity profile, and any method of calculation based on the
self-similarity property of these functions for perturbations is inaccurate.

To determine the critical parameters we must solve the system of equations

(6-5-18)

_-a®, -_=® ; (6-5-19)

where

|--H{I,_--I,)--I,
| 'I

i .... io._

with boundary conditions

-+I-" O, " -- I,/ 'F -!- , ./,=0, ./,=0;

J* a*
It-.,, 1, m--l, /1=I--T, l,=! a

ass

(6-5-20)

(6-5-21)
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FIG. 6.15. Relative law of friction from the numeri-

cal integration of the system of Eqs. (6-5-18)-
(6-5-20). _ = _/_, where _D = (1-0.25 b)2; r6 = f/

fcrit" Points: O--b = 0; o--b = 3; curve calculated

from (6-5-22).

FIG. 6.16. Relationship between the permeability

parameter bcrit and the shape parameter fcrit ac-

cording to Eqs. (6-5-18)to (6-5-21). b = bcrit/

b°crit; _crit = fcrit/_crit; f°crit is the critical shape

parameter at an impermeable wall; b° is thecrit

critical injection parameter on a fiat plate. _)
results of numerical solution of the system of
equations; - - -) = calculation with (6-5-23); '_ test
points of B. P. Mironov and P. P. Lugovskiy.

The relative law of friction _(f, b) and the integral characteristics of the boundary
layer, _*/_, 5"*/6, H, are found from the second boundary condition.

The system of Eqs. (6-5-18)-(6-5-21) was derived and numerically integrated by
D. N. KasilVev [18]. He proposed a formula to approximate the results of the numeri-
cal integration

(6-5-22)

where f---- f/fcrit and the parameter fcrit depends on the longitudinal pressure gradient

and on the intensity of injection.

Figure 6.15 shows the results of the calculation of the relative limiting law of
friction. As can be seen from the curves in the variables _, _, gas injection does not

have an appreciable effect on the relative law of friction. This effect is taken into

account by the dependence of fScrit on bcrit, which is shown in Fig. 6.16. Also plotted
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in this figure are the experimental data of B. P. Mironov and P. P. Lugovskiy [75]

and a computation using the formula they proposed

bcrit _ _:, ss_F_it."=( l- 8¢_t,
(6-5-23)

As can be seen from the curves, the agreement between the assumed asymptotic

solution and the test data is satisfactory.

As D. N. Vasil'ev [18] has shown, simple analytic expressions can be derived

with the power-law approximation for the relative limiting laws of friction with joint

action of a longitudinal pressure gradient and a transverse mass flow. In this case,

from (6-5-20), it follows that

_s"--(_I--_')} (6-5-24)
Z1e

Then, instead of Eq. (6-5-18), we have

(6-5-25)

From this, integrating with limits from _f_ + b/4 to 1, and from 0 to }, we have

_* --I/(-D - _ _ (6-5-26)g'f_.,

The integral in the right-hand member of the equation depends only on the velocity
profile under standard conditions. For boundary layer separation (¢ = 0) we have from

(6-5-26)

L . '

/110

where
!

do. _ Y_-

From Prandtl's formula and Eq. (1-6-7) we have ]7-_- -- I' Z,0, and hence

!

L-_ IJf_ de'- In case of an impermeable surface b = 0, and we have from Eq. (6-5-27):
o

?g

Hence

--_ _-_-'_'a"- arcco s _o, (6-5-29)
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where (f)o = f6crit/f6crit O; bo = bcrit/bcrit O' f6crit 0 is the critical shape parameter

at an impermeable wall, bcrit 0 is the critical injection parameter with f6 = O.

Formula (6-5-29) is in essential agreement with the numerical solution of the

system of Eqs. (6-5-19)-(6-5-20). On substituting (6-5-27) into (6-5-26), after
rearranging, we obtain

arcsin[V/I'-- ::+÷)'i [/,-(÷i.](6-5-30)

or

(6-5-31)

Taking Spalding's formula [229] for 1, we have (with Re-- _):

O,_|<a, [=xl, } (6-5-32)
a<. t,_ I, _=xa,

where x and a are empirical constants (for an incompressible fluid x = 0.4, a = 0.2).
Hence L=9.8.

From Eq. (6-5-28) we have

(6-5-33)

Integrating ¢6-5-26) over w from _-+ b/4 to co and over } from 0 to 4, we obtain
the limiting velocity profile:

where

L(_)=jT

After rearranging, we have

/Iii

m = ¢(_S

where L = Lq)/L(1), f5 = fs/fScrit"
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It should be recalled that Eq. (6-5-35) is valid in the region _ > 0 (outer solution).

In the separation section of the boundary layer f5 = 1

-cdt --_- cos [(1 -- L) arcco$ +] • (6-5-36)

For an impermeable plate (b = 0)

(6-5-37)

For the separation section, with b = 0

(6-5-38)

WithT 5 = 0, w = 1, and, with Spalding's formula for 1, we have

£ = 3,V_"
with 0<_<a;

[i + 2a __j

[. _-- E (a) -i - [| Y_ - a l_a ] with a<l_l.
t + 2a I/h-

(6-5-39)

Using Eqs. (6-5-34) and (6-5-39), D. N. Vasil'ev calculated the integral charac-
teristics of the boundary layer for the conditions adopted.

/112

(-

FIG. 6.17. Distribution of velocities in the

separation section of the boundary layer

(b = 0, f = fc.rit ). Curve--results of numer-

ical integration; o-Stratford' s experimental
points [234]; f* = fH.

In particular, in the boundary layer separation section at an impermeable wall

_-_0,157; -_--=- 0,37;

/'/c_t "=- 2,36;

(--l*¢rit) --- I--It aa---) = 0,00946;

(-r,7)=o.oo o,.

(6-5-40)

87



We see, on comparing these values with the formulas (6-1-11), that the more
accurate accounting for the effect of the longitudinal pressure gradient on the distri-
bution of shearing stress over the boundary layer cross section is essentially reflected

in the limiting values of the shape parameters Hcrit and f**crit' and has practically no

effect on the parameter 5**/6. Figure 6.17 presents a comparison of the limiting
velocity profile in the separation section at an impermeable wall with Stratford's data
[234]. Note the satisfactory agreement between experiment and calculation.

88



PART II: PRACTICAL APPLICATIONS OF THE ASYMPTOTIC

TURBULENT BOUNDARY-LAYER THEORY

7. 1.

CHAPTER 7

BOUNDARY LAYER ON AN IMPERMEABLE SURFACE

The Influence of Finite Reynolds Numbers on the Relative Laws of Friction,
Heat and Mass Transfer on an Impermeable Plate

/114

The asymptotic theory of wall turbulence presented in the preceding chapters, as

well as all the limit formulas ensuing from this theory, are applicable, strictly
speaking, only in the realm of infinitely large Reynolds numbers.

The question as to whether the relative limit laws are applicable for turbulent
boundary-layer calculations at finite Reynolds numbers remains open, and the final

answer to this question can be obtained only by a direct comparison of the limit for-
mulas with the existing experimental data.

The problem of the effect of compressibility and nonisothermicity on the laws of
drag and mass transfer in a turbulent boundary layer of gas is of great practical sig-

nificance in various branches of contemporary technology and has been attracting the
attention of many researchers, both here and abroad.

Shown in Fig. 7.1 are the ranges of temperature factor and Mach number that

have been covered by experimental research. The initial experimental data and con-

ditions of the most fundamental research in this area are given in Table 7.1. As can

be seen from the graph and table, a rather bro_td range of governing parameters /115
(*, _*, ,_0 and Re**) has been covered experimentally up to the present time for flow

of a supersonic gas stream past a plate. For instance, the enthalpy factor ¢i varies
from 0.01 to 20, the Mach number up to 10 and the Re** number up to 109.

FIG. 7.1. Ranges of application of the

parameters ¢ and M 0 covered by ex-

periments devoted to measurement of

turbulent drag and heat transfer on an

impermeable surface.
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Table 7.1. Comparision of the experimental data on turbulent friction on a fiat plate

Authors

Coles [18]
Re** :_ idem.
Re_ :_ 8.10'

Hili [iS4]
Re*" == ldem

Korkegi [162]
Re ars am Idem

Lobb, Winkler and
Persh [173]

Re" -. Idem

Wilson [ 24S]
Re, =_ Jdem.

Re, ,_ 101

Chapman and
Kester [113]

Re. -- (6-- 16)IO.

IAepmann and
D hawan [113]

Re, =,. idem,
Re. _. i. 10'

#*
M. I Re°" T

2,6 6600 !,0
2,6 10200 1,0
3,7 4 100 1,0
3,7 7560 1,0
4,5 2900 1,0
4,5 3 470 1,0
4,5 5 240 1,0
4,5 6590 1,0

8,99 l 245 0.448
9,04 l 607 0,460
9,07 I 908 ! 0,474
9,10 2 287 ! O, 495
8,22 ! 2081 0,493 _
8,35 2498 0,497
8.27 2 885 0,500
8.29 3 202 0,500
8.29 3451 0,502

5,787 2477 1.0
5.77 2780 1.0
5,793 3429 1,0
5,8O5 4040 1,0

4,93 5350 0,924
5.01 6480 0,713
5.03 7950 0,575
5.06 7370 0,535
6.83 8550 0,613
6.83 12640 0,508
6,78 8400 0,513
6,78 7960 0,457
7,67 8440 0,4fi5

,55 I ,0
,70 I ,o
,75 1,0

1,93 ! ,0
2,18 i,0

0,51 1,0
0,81 1,0
I ,99 1.0
2,49 1,0
2,95 I, o
3,36 1,0
3,60 I,(}

0,42 1,0
o,_;_ 1,0
0,82 I ,0
1,2_ 1,0
1,45 1,0

0,638
0,641
0,516
0,499
0,460
0,455
0,424
0,429

0,197
0,235
0,234
0,227
0,257
0,265
0,259
0,247
0,239

0.403
0,4O0
0,400
0.397

Experbnental
C ondi_ons

Thermally insulated
plate

Cooled wall of a
conical no_le

-Method of determiningcf

Direct measurement
with a floating .¢.Im_ent

From the velocity _-
client at the wall

Thermally inmlated
plate

Direct measurement

using a floating element

0,369
0,381
0,341
0,329
0,251
0.234
0.244
0,251
0,217

0,885
0,851
0,828
0,810
0,770

0,985
0,929
0,746
0,671
0,623
0,578
0,551

0,989
0,966
0,9(;5
0,829
0,7_

Cooled wall of a

plane no_le

Thermally insulated
plate

Flow past a thermally
insulated cylinder in
the longitudinal direc-
tion

Flow past a thermally
insulated plate

From the velocity gra-
dient at the wall and by
Reynolds analogy from
measurements of the heat
fluxes in the test
section

From velocity profile mea-
surements and the momentum
equation.

Direct measurement of
mean cross sections.

Direct measurement of
local values

9O



Table 7.1. Continued

Authors _ Ib*. _

2,81 0.400 0,867
Sommer and 3,82 0,2681 0,730.
Chort [223] 5.63 0,176! 0.562

Re= == idem, 6.90 0.161 0,404--0,451
Re= =, (3--9). 10= 7,00 0,162 0,395--0,446

3,78 0.272 0,694
3,67 0,285 0,724

Monoghan [19]
Re'" _= Idem 2,43 !.0 0,680

Rube sin [113]
Re, =,, |dem. 2,r:_ l ,o 0,705

Re, ,,,=7. I0' I

I

Sdaich [109] I

Re= ==, ldem. $,06 i ,0 0,625
Re'= =, (3--iS). 10'

Abbot [154.] 0,278
Re= _, Idem. 0.173
Re= -----5. i04

0,720
O, 340

Experimental
Conditions

Hollow cylinder
moving against

Method of determining
cf

From the change in
model flight velocity

the flow in a
wind tnnne1

Cylindrical surface

From velocity pro-
file measu__ments

From velocity pro- '
files

• Comparison of experimental data on turbulent heat transfer on a fiat plate (ratios of the

Stanton numbers St/St 0 for Rex = idem)

Authors StlSh Experimental Method of determining
Conditions St

Bradfield and

De Coursin [ 106]

Pappas [190]

Schoulbey [ 106] *

FaUis [138]

M

2,586
8,180
3,410

1,823
2,290

2,00
2,50
3,09

0.67--0,77
0.535--0,700
0,547--0,610

0,795--0,900
0,675--0,790

0,763
0,675
0,600

0.744
0.745

Flow past a cone

Uniformly heated
plate

Uniformly heated
plate

Data not given

Measurement of the heat
transfer by a non-stationary
method

From the expendiRtm of
electric power and from
the wall temperature

From the expenditure of
electrical power and from
the wall temperature
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The experimental data cited in Table 7.1 as compared in Fig. 7.2 with the limit
formula (4-1-4). The experimental data obtained in the presence of heat transfer are
reduced to thermal-insulation conditions by formula (4-1-2). The frictional-drag

coefficient for standard condition (Cfo) was calculated by formula (1-10-3), the _ and p

that occur in Re** being determined from the free-stream temperature T o.

O

Q

5f

$ 8 7 8 g

FIG. 7.2. Effect of gas compressibility on
the relative drag law. 1--Re** -- 103; 2--
Re** -- 4" 103; 3--Re** = 1.4 • 104; 4--Re**
= 106; 5raRe ** = c_.

As can be seen from Fig. 7.2, the agreement observed between the experimental
data of the various researchers concerning the influence of compressibility on the
frictional-drag coefficient and the limit formula is not only qualitative, but, in some
cases, quantitative as well. All the experimental points are found to be above the
limit formula, and a tendency toward stratification of the experimental data according
to Re** number is noted. Considering the relatively weak influence of Re** on the
value of the relative friction coefficient, it is completely permissible to introduce the
values of the parameters Z and _ corresponding to isothermal flow as a first approxi-
mation into Eqs. (4-1-1) and (4-1-13), that is,

Z. _ I -- ®,,; }
" "'" ='" V_"

(7-1-1)

For a plate, _10 = 11.6. After substituting these values for Z10 and _Io into Eq.
(4-1-13), we get

|-

W"--
(÷"--,)(l--8,2V_)'

2 (¢,'--')+ ,ae
rL, i,v'4(,.- ÷ +

• 18.4(,i,'-'I)Y'_+.._÷ "_'.

--Kcs'aV'4 (÷"--_)(÷"-Fa÷)+ (..A÷).I

(7-1-2)
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For adiabatic flow,

• { ./e-=i . _ _l/e-=T c V
! ncsl. V '-_---arcs.n.._l,, "-_-- t.]

V -- _-=-i _ I - s.2 Vc_--. / "
(7-1-3)

At subsonic velocities,

2 .]'. (7-1-4)iF= V'_- 8.2 (_- l) V_, + ;

The results of calculating the parameter 9' by formula (7-1-3) for various values of
Re** are shown in Fig. 7.2. As can be seen from the graph, the very first approxima-
tion yields satisfactory agreement with the experiments.

Spalding [164] has proposed simple approximating formulas for Eqs. (7-1-3) and
(4-1-4); they have the form

[_-,,, ._ ]' (7-1-5)

where _r is the limit friction law;

×M:I"','-
(7-1-6)

Taking Eqs. (1-11-2) and (1-4-4) into account,

-,, -----1.3 (Re*') -'/s . (7-1-7)

For the region of large but not infinite values of Re**, the value of ¢o;0 is signifi-
cantly smaller than unity. From formula (7-1-6) it follows that in this case

Ve= (_)-_. (7-1-8)

Correspondingly, from Eq. (7-1-5) we get

rq_, - 1.3(,e**)-t/s ._-i/:1],T--
L t -- t ,3 (Re") -tf3 .I "

(7-1-9)

Expanding into a binomial series, we have

_' = v=, [] + 2,6(R_-)-''_ (t - $-"_,_=':')l. (7-1-1o)

Let us examine three limit cases:

a) M< 1,
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then, tF -. 2/(1 -I- _} as _-. l,

and

V .-. _' [ 1 -I- 0,6,5 (Re'+)-lls II -- +) ] •
(7-i-11)

Thus, when a wall is heated, tF_>tF_, and when it is cooled, tF<_tlr ;

b) the Mach number is very large and the wall is thermally insulated; in this case

/122

Tw._-T'w,

_F 12 fr k- 1b12_-, 12 I (7-i-12)
®=Tk -_-- %/ --5 +.

and

-- W [1 -I- 0,927 (Re*")-u']. (7-1-13)

From Eq. (7-1-13) it is evident that _t'>_F® ;

c) the case _*----_oo, A_=_0.

Taking into account Eqs. (7-1-3) and (7-1-11) we get

tF--
! 2 _-- I -(- 16,4 I/_"te '

-- --_ arcsln _ -- I I

i --"_" arcsin 8.2 ]/'_l*

where

(7-1-14)

W= r___w. (7-1-15)
. ]'OWt

The experimental data of Matting, Chapman and Nycolm [176]are compared in
Fig. 7.3 with (7-1-3). The experiments were carried out over a broad range of Re

x

and Mach numbers. The frictionaldrag coefficientwas measured by means of a float-

ing element with a maximum error of 5%. The transition from _" to _Tz = b,

was realized by means of the integral momentum relation.

For a plate the integral momentum relation can be written as

T ReL'_F 2 {Re")"
(7-1-16)
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After integrating and transforming, we get

I

_=__ _r_*' (7-1-17)

As can be seen from Fig. 7.3, the first approximation yields friction coefficients
which are somewhat too high, especially at high Mach numbers. The second approxi-
mation yields almost complete agreement with the experimental data, when

Z-_l--®,, %=II,6U_F cf°" (7-1-18)W' -_-2-

/123

U

t2

,/._ " .... _.... ___.¢.__

_"a/R,x -- M_-2.95

The final computational formula is

FIG. 7.3. Comparison of the limiting
formulas with the experiments of
Matting, Chapman and Nycolm [176] .
- - -- ) calculated by formula (4-1-4) :
- - - ) calculated by formula (7-1-3);
-- ) calculated by formula (7-1-20).

(_'- 1)(1- s.2_ %-_c,.),

X [arcsin 2 (_" -- I) Jr--_;
m

16.4 (_* --I) _r_=cs, + A_ ]*.
--arv.sin Y 4 i,_"- 1)(_" + _) d- t_)' ]

(7-1-19)

For the case 21_= 0

|

I -- 8.2 V'_.i ,

and for subsonic velocities

(7-1-20)

]. (7-I-21)

For the case _--*0 it follows from (7-1-21) that

_,-.o-"[ 2 j,.4.o5(ci.)'/4+ ! (7-1-22)
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The results of relative drag-law calculations by formula (7-1-21) are presented in

Fig. 7.4. As can be seen from the graph, with strong wall cooling ($,¢:1) and heating
(_>>1) the Re** is observed to have an appreciable effect on the magnitude of the rel-
ative friction coefficient. Given in Fig. 7.5 is a comparison of the existing experi-
mental data with formula (7-1-21). Despite the great scatter of the experimental data,

the agreement of the proposed computational method with experiment can be consid-
ered satisfactory.

1

.5

F

FIG. 7.4. The effect of non-isothermicity on
the relative drag law: Curves calculated by
formula (7-1-21): 1--Re** = _; 2--Re** = 106;
3--Re** = 105; 4--Re** = 104; 5--Re** = 103.

1,2

8.8

o_
o_ o. o,5 o.e go 1.2 _._ N 1.a 2.8

FIG. 7.5. Effect of non-isothermicity on the
relative laws of drag and heat transfer on a
flat plate: 1--calculated by formula (4-1-5);
2--calculated by formula (7-1-21) for Re**

= 1,000, @ = @/@M; _I, = Tw/T** w.

s_bolio]°3°1-L_1_
_]_1_1_
°l_1"1"
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• Equations (7-1-20) and {7-1-21) enable us to take into account the effect of the
Reynolds number on the relative drag law, but this effect is not great in the practical
range of Re**. For practical calculations, therefore, it is convenient to retain the
relative laws of drag and heat transfer in the form of limiting relations (4-1-2), (4-1-3)
and _4-1-5). In deriving the limiting laws the choice of the "standard" conditions, i.e.

the friction coefficient Cfo, leaves unanswered the question as to the temperature at

which the viscosity coefficient appearing in Re** should be defined, the friction

coefficient Cfo being calculated in turn from Re**.

This question arises when practical calculations are being made and when the
relative limiting laws are compared with experimental data.

In the. computational method proposed above, based on the introduction of the
second approximation, all the physical gas parameters appearing in Re** are
determined from the thermodynamic temperature at the outer edge of the boundary
layer.

As a result, it is possible to get good agreement between the computed and the
experimental data, but the computational formulas have become complicated, com-
pared to the limiting ones. The variable viscosity in the laminar sublayer can affect
the relative laws of drag and heat transfer only with finite Re. Since Ot--_ as
Re---_o% as was demonstrated earlier, the temperature T, at the outer edge of the

viscous sublayer tends to Tw, and in such a case the viscosity may show up in the

wall layer having the temperature T w.

If, taking these arguments into account, the gas viscosity assuming is Re** is
determined from the wall temperature, the limit drag laws change to:

a)

Y--k'g-.) k +, (7-1-23)

for the subsonic velocity region;

b)

(7-1-24)

for the supersonic velocity region on a heat-insulated plate;

c)

kl" + •
(7 -1-25)
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for the supersonic velocity region and heat transfer, taking (4-1-11) into
account.

Given in Fig. 7.6 is a comparison of formula (7-1-25) with the existing experi-
mental data. The complex

m +I

is plotted on the ordinate axis.

R

a)

Reference [227] [52] [154] [223] [246] [183] [183] [6] [173] [193] [6] [51] [84]

Vertical,
hatching

Cross

hatching
Oblique

hatching

b)

Reference

Symbol

I [22TJ

O

[124]

V A Q t X +

98

FIG. 7.6. Influence of non-isothermicity (a) and compressibility (b) on the
relative laws of drag and heat transfer. The curves were calculated by
formular (7-1-25).



As can be seen from the graph, all the experimental points are located along the
curve describing the limiting relative drag law.

For the domain of existence of the triple Reynolds analogy, then recommenda-
tions can be applied to the laws of heat and mass transfer. The question of whether the

laws of heat and mass transfer are conserved when the boundary conditions change will
be examined in Chapter 7.

Thus, for engineering calculations of friction and heat transfer during the flow of
a compressible gas under non-isothermal conditions, we can use the limit relative
laws of drag and of heat and mass transfer if the standard values of the coefficients

Cfo, St ° and StDo are calculated from Re**, in which the dynamic viscosity coefficient

is determined from the wall temperature.

_r

Lr

1g:

M_

9_

8:

_F_b

$.

4 ¸

"i
-a$2

O

I
A

i

i
i

_ v,v#8.o8_1

Itl

i

o_" o,,J v.s_ 13

FIG. 7.7. Comparison of the limit velocity
distribution in the turbulent" boundary layer
of a compressible gas with the experimental
data of [17 5].

....... calculated by formula (4-2-2)

,. Vc-_fll/._l [arcsin V_o I ¢_-arcs,nV_.

M, I.i7 2.9 J 4 _3

Re** ).6- I0' _ -- 5.. ,.104 J .3_ . li |

1,88

3.10*

V

MO

Re*'*

Symbol 2.,I_.,!.78,10' O' I 2"4'IQS 2, ,1(*

13 , I ©
I

4.$

3.47.1_

¢,.
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a rJ

• i 'Mo
_ _ ,'5 lO

FIG. 7.8. Effect of compressibility of the gas
on the value of the shape parameter H. Curve
calculated by the formula H ffi1.28_b*0.95;

experimental data: o --[134]; O--[1551.

Also possible are other recommendations for determining the parameters appear-
ing in Re**. Thus, for example, according to the calculations of Spalding and Chl
[227], the limit formula gives a mean square error of 9.9% when compared with all
the available experimental data of the formula is written as

an:sin "_' ]',
V'4 (_*-- I) t_" + ._'_)+ (-_4,)'J

(7-1-2e)

where FR = _- 0. 702_-0.7?2.

A comparison of the limit velocity distributions with the experiments of various
authors is given in Fig. 7.7, and the effect of gas compressibility on the value of the
shape parameter H is shown in Fig. 7.8. As can be seen from the graphs, the limit
velocity distributions in the turbulent boundary layer of a compressible gas are in
satisfactory agreement with the experimental data.

Given in Table 7.2 are the results of comparing the experimental data on the
friction coefficients on a fiat plate with those calculated by I. K. Ermolaev using for-
mulas (7-1-19) and (4-1-2). The table shows that the use of the limit formulas to
determine viscosity from the wall temperature yields a mean square deviation of the
calculated friction coefficients from the experimental ones, within the limits of the
experimental accuracy of about 10%.

/132

7.2. Solution of the Integral Momentum and Energy Relations for a Turbulent
Boundary Layer on an Impermeable Surface

The integral momentum relation for a plane boundary layer is conveniently
written in the following form:

(7-2-1)

where
J_oO09 _ " IIII .--- poWJ, /_o.. Re. = p.u,J./_..;
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Table 7.2.
cf exp - cf theor

Table of mean square values A =
ef theor

Author

Splvak
Blrinlch et el.
Dabwan
Monagau et al.
Coles (1954)
Wi Ison (1950)
Rubesln et al. (1951)
Chapman et ai., (1954)
O'Donnel (1954)
Ha k k iuen (1955)
Matting et al. (1951)
(]oddatd (1959)
Abbot (1953)
Moaagan et al. (1953)
Pappas (1954)
Sommer et al. (1955)
Hill (1959)
Wink let ( 1961 )
Jefomln (1968)

(1950) [ 2.8

(1952) l 3,05
(1952)]0,35--1,45
(1952)[ 2,82--2,43

First approxim ation

Acc. to Separately Total for
each au- for all
thor sep- A_-.o authors
_lYA,_ ""d_+ _' A,%

8,740
8,740
8,740
8,740
8,740
8.740
8,740
8,740
8,740

14,81
14.81
14.81
14,81
14.81
14,81
14.81

From/z w

Accord. Separately
to each for
author 4q_----.O

sepazately and a_,
A_%

2,6---4.5
1,9--2, 19

2,5
0,81--3,6

2,41
O, 18--I ;76
2,95--9,9

0,7--4,54
3,9--7,25

2,43--2.82
i,69--2,27
2.81--7,0
8,99--10

5,20
2,5--3,5

10,94
10,_,
10,94'

0
0
0
0
0
0
0
0

I--I,8
3--3,5

1,7--2,19
1,05--1,75
6, I--9,0
3,5--5,5
2,2--3,5

6,915
7,582

13,69
6,806

11,09
10.53
8,881
5,652

11,58
9,007
6. 567

12,71
17,06
19,56
12,60
8,720

18,20
18,09
8,20

4,70!
10,67
12,76
8,261
8,11:
9,07d
5,7U
6,40q
6,36
8.26!
8,87

15,4
23,44
14,91
I| ,26
13,21
14,82
16,03
4,90

105
105
105
105
105
105
105
105
105

all [ Reference
authors
A, %

[259]
[109]
[124]
[261]
[118]
[245]
[203]
[113]
[129]

10,05 [147]
10,05 [176]
Io, 05 [263]

[264]
[262]
[190]
[223]
[iss]
[246]
[1561

is the dynamic viscosity coefficient at the stagnation temperature; and [== a*- d_,___.
_;o dx

is the shape parameter.

We represent Eq. {7-2-1) in the form

d Re'*._____.: _ c,o ._. 7"( l .at_H) fcrit (7-2-2)
ReLd_

and linearize the right-hand side of the equation. The relative drag law is represented
as

: tIr,gr1_,u , (7- 2- 3)

where

and _f

V T____w + 1 '
T"w

r +-, ]'
arctg N, r

is determined from the graph of Fig. 6.2.
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We represent the right-hand side of Eq. (7-2-2) in the form

F= _,_M_-- (l + "_t) fcaJ; (7-2-4)

this approximation is exact if _= 0; a small error is introduced when _--* 1, but since

WtW._.(cjj2 ) << (l + Hcrit)fcrit, this error is insignificant. Then the integral momentum

relation, after appropriate transformations, reduces to
/133

dRe*%o Re*%, dwo _Tti_. M (to _
d,_ _ (| + _tiO We dJ _ RICL"

(7-2 -5)

Taking Eqs. (1-11-2) and (7-1-25) into account, we have

d Re**N Re**,o d:_,

d* +(l +H=i 0 _ d2 =_t_'M)_

X R% 2(Re"..) _

(7-2-6)

Integrating, we get

( ')Re**._-exp I +d (m-{- I) -_=Re_,j (_Ft_FAa)._

4

Pw L

J

(7-2-7)

where Re00 = PooWmaxL/Poo; Poo = P00/RT00; P00 is the total pressure;

Heat) dw_, w,, U= _'o/Wmax;x=(n,+ x}_(x + -, '-'-

_Dmax= I/_; Herlt = 2,41'_* -t- 1,38._'?- 0,52.

Thus, for given laws of variation of wall temperature and velocity at the outer
edge of the boundary layer with respect to the coordinate x, we determine the local

value s of Re** 00 from E q. (7-2-7). The integration constant C --- (Re_m+'e _) when _ = },,

z, is the section at which integration begins.

In the particular case of the turbulent boundary layer beginning to grow at zero,
C = 0. If the turbulent boundary layer is preceded by a laminar boundary layer, the
laminar boundary layer is calculated upto the moment it changes into a turbulent one

and the integration constant is determined from the value of Re**00 for the laminar
boundary layer in this section.

The local values of the frictional drag coefficient are determined by the formula /134

B b_, m (7-2-8)
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where _I, is calculated by formula (7-1-19) or by the approximating formula (7-1-25).

The value of _f is taken from the graph in Fig. 6.2. The shape parameter f, which is

needed for determination of fcrit-f/fcrit and subsequent determination of _I,f, is calcu-

lated by the formula

-_ Re".o dU

Re./]' (I -- U')
(7-2-9)

The quantity fcrit is determined by formulas (6-4-6), (6-4-7), (6-4-12) or by the

graphs in Figs. 6.10 and 6.13. In the cross section where the shape parameter f

reaches the value fcrit' the turbulent boundary layer separates from the wall.

For the subsonic gas flow region Eq. (7-2-7) is reduced to

]Re-=_,p(-:-' _r(,,,_,)8-
=+|)L 2 Re*S IF_'exp(I}dx+C

(7-2-10)

where Rer_pow,,L!l_,; Wo, is the velocity at the outer edge of the boundary layer in the

initial section _ = _0;

_.= _.I=..;I= (,,+ ,)_(i + tt=_,)_.

The parameters Hcrit and fcrit are found from formulas {6-4-11).

At constant wall temperature _I, = const

Re"* =_'_o B ReowV,=; _ ('*'')'dx
t,

-] !
_ t__ I:+-i'7"_

+iRe w w 0)7,

(7-2-11)

where Re_w "- poWo_'*/_w; l_eow= Pomo,L,/R.w;

"m-'_-( I/_'+2 | )'; ]_Re**w/(Re.w_.)d_./dx;x=l+nca '

The drag coefficient is calculated by the formula /13..._._5_5

ct--- Vt®vl'tB (_e**w) - " (7-2-12)

For the case f flow around a plate (dP/dx = 0) the integral momentum relation has
the form
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s (7-2-z3)

Integrating we get

[ i ]'Re_ 2B---(m-J-l)Ret Tdt.J-(Re_ +' _ (7-2-14)
• Tiz,

4

Taking Eq. (7-1-25) into account,

. _ ReL | _ ":--m-_ , 2

[ _,v,_- -(_f+'l'xC-_l'_'+'_"'u"
_7-2-15)

In the case of constant wall temperature

(__+,),(._..) - ,..X +(Re ,,F.7_

(7-2-16)

If the turbulent boundary layer grows from the leading edge of the plate,

The local drag coefficient is determined from the equation

(7-2-17)

_,=, .--_...-B)_. -_
Ke W -- i _ i_e_w

(7-2-18)

Thus,

! m I

'(=)="-_ U_)-r,-_-_,_ (..-,.-,9>
For more accurate calculations we can use the second approximation, i.e. formula

(7-1-19). In this case Eq. (7-2-18) is written as

C_) I_2_0>

/13.__.66
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_I, being determined by formula (7-i-19) and Re** by formula (7-2-16). In the case ofw
gas flow near the forward point of a blunt-nosed body, the velocity at the outer edge of
the boundary layer varies according to the linear law

wo= CWo1_, (7-2-21)

where w01 _s the free-stream velocity and ,_ = x/D.

The constant c depends on the shape of the body universed in the flow and is close
to unity for blunt-nosed bodies. If it is assumed that W/_ l for the accelerated flow
region, then for the subsonic gas flow region at constant wall temperature

Re'"= 0,0136 ,' '2-, .- (7-2-22)

and the local friction coefficient is

.___ 0,0375q,0/8 _%_o,_c_o.,z_ o.,. (7-2-23)

Thus, in contrast to longitudinal flow past a plate, where c,_-o. 2, when the flow is
crosswise to the plate, cj_2-o.,. The mean drag coefficient is

a) £

ell=,. = T el dx-- 0,072_Y_*Re_-°'_ ;
o

(7-2-24)

for longitudinal flow past a plate, and

b)
1_,_ 0,12oqr_t"Be t ' (7-2-25) /137

for a transverse flow.

Thus,

et,t_-, = 1,732. (7-2-26)
et long.

A number of other practical problems can be solved by means of the integral
momentum relation. Thus, for example, it is not difficult to determine the law of

change in area of a diffuser at whose walls the turbulent boundary layer is in the pre-
separation state. In this case the frictional drag coefficient at the wall will equal zero
and the integral momentum relation for the flow of an incompressible fluid in a plane
diffuser is written as

dO*" a** d_,
4. { (2 + Hcrit ) =0w o dx (7 -2 -27)

or

aa,. da,, (7-2-28)= - (2 + Ucri t) ---_-.
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Assuming in the first approximation that the boundary layer growing at the diffuser
walls does not affect the parameter of the fluid in the flow case, the continuity equation
can be written in the form

(;=./_w,_Ft =.p,_r,F= const. (7-2-29)

where F is the diffuser cross-sectional area, F 1 the area of the initial cross section

beginning with which f = frit and cf = 0, and w0i is the velocity of the fluid in the initial
cross section.

After integrating, taking Eq. (7-2-29) into account, we have

_.- :. a'., kT;-)
(7 -2-30)

where 6"* 1 is the momentum loss thickness in the initial section.

On the other hand, for the shape parameter f we have the formula

e d_r, a'" dF
/¢rit = _'. -_ -= P d;' (7-2-31)

where F = F/F 1.

Taking Eq. (7-2-30) into account,

[crit =- -- a", (p)' +ncrit d.P_P (7-2-32)

After integrating we get

I

(7-2 -33)

If it is assumed that Hcrit and fcrit are their limit values (Hcrit = 1.87, fcrit
= -0.01), then

!

0,0387 1.ff-_
,-- [1 + -_-_- (_ -- x.)_ .

(7-2-34)

The problem is solved analogously for a cooled diffuser, as well as for the flow of

a compressible fluid. In particular, Hcrit -- 0 for intense diffuser wall cooling condi-

tions, when $ _ 0, and it follows from (7-2-33) that

_ [ 0.o2 ]_/_cI. I+ _ (x--x,) • (7-2-35)

Of great practical value for supersonic aviation is calculation of a supersonic dif-

fuser without separation. The configuration of the throughput section of such diffuser,
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corresponding to the pre-separation state of the boundary layer on the surface of a
duct, can be determined by resorting to the integral momentum relation and the limit
formulas for the critical shape parameters.

In the two-dimensional diffuser case the integral momentum relation for a bound-
ary layer in the pre-separation state can be written as

d_ "_ U dx (2 ÷ HcriD = 0, (7-2-36)

where U = Wo/Wma x.

The parameters U and ¢* are interrelated by

! -- (I -- r) U' (7-2-37)
4" == i -- U = "

The dependence of Hcrit on ¢* and A¢, as was shown earlier (see (6-4-12)), can be

approximated by the formula

Hcrit ,= 2,4,_° + 1,38¢* (_--I) --0,52. (7-2-38)

Integration of Eq. (7-2-36), with allowance for Eq. (7-2-38), yields

_'_'="L_-;_I°°IU_ _[t.94-o.7 (_,--t)l (I--U=I_U_)t.=÷o.7 t_l,-I) .
(7-2-39)

The expression for the shape parameter f can be written in the form

a** I d(U,) (7-2-40)t:nt = _- 0;-'_'

Substituting Eq. (7-2-39) into Eq. (7-2-40) and using the dependence of the shape

parameter frit on ¢* and A¢ obtained earlier (see Fig. 6.13), it is possible to deter-

mine the dependence of the dimensionless velocity U at the outer edge of the boundary

layer on the longitudinal coordinate _, corresponding to an attached gas flow in a
supersonic, shockless diffuser. In particular, for the case of a heat-insulated wall
we can use the formula

1¢_-_. " = 1 --U, " (7-2-41)

Then

i--(I--r)U'l'" d(U,) (I--U_),., ,._ 2fcrlt,.(I--g,)..,, (g')'.-----_-- (U_),."- I,,_ ix-- x,). (7-2-42)
m,

The corresponding change in area of the duct throughput section is found from the

continuity equation, which, for the .conditionsbeing considered, can be written

conveniently as
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u (t -- u,) _'=r F =. U, (t - _ )l_-r, -- coa,_. (7-2-43)

The integral momentum relation for an axisymmetric boundary layer can be
¢¢ritten in the form

_" -,-_" _- =R_,[,F,,,F,,,',*" (_+-_,)t_71._-- _"'aT _ --
(7 -2-44)

Linearizing the right-hand side of the equation, we get

_+Re,.. [(,-t-Hc_t)dw. + ,I,, dO R=

= i_LIF.t-f_ - .

(7-2-45)

Taking Hcrit = const on the first approximation, we get

:I [I -.Fro T

_***= u.+.=.,_.LTB_-S('r'v,,)-
4

,v {Y-_w_'Ul+cl+")ncr;tR w+" 11 -- U')L-I" dz "l" C

(7-2-46)

For gas flow in a nozzle, the velocity at the outer edge of the boundary layer can
be determined in the first approximation from a one-dimensional model. In this case

the continuity equation (7-2-43) can be written as

! !
f k - l ,*., [ 2 _lra- F=it

UlI--_)=r'=_,_T) k,#T) T" (7-2-47)

where Fcrit is the nozzle throat area.

Moreover, for accelerated streams the shape parameter H can be determined by

formula (4-2-8). Consequently,

•,, .--U_ _- L_-BI_e._-('+") S(,',_).
L

1'X f,"" _'u (' " "-'_-,
• t-_.1 +')'Z_''dz-t-C

(7-2-48)

where r) = D/Dcrit.

The local drag coefficients are found by formula (7-2-8). Using Eq. (7-2-48) it is
not difficult also to determine the velocity coefficient, which takes into account the
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effect of the boundary layer on the flow parameters in the outlet section of the nozzle,

The integral energy relation for a two-dimensional boundary layer at an imper-
meable wall in the absence of internal heat sources can be written conveniently as

d,Re'*rmdi t Re**r°°daQ(a.,_)dl -_ ReL St_. (7-2-49)

Using (2-6-4) and the invariuncy of the heat transfer law under change of

boundary conditions, we have

t'+',,o.,r <,-<,.)"='-

}'
(7-2-50)

Accordingly, for an axisymmetric boundary layer

(7-2-51)

For the case of gas flow in a supersonic nozzle with allowance for Eq. (7-2-47) we

get

! II+m B 7

lil

.. . _--_,+m ) m+-'--T

+ (Re r0_a/..o_Zl •

(7-2-52)

The local values of the Stanton number and the mag-nitude of the specific heat

fluxes are determined by the formulas

S_ = v s e f _. _-. (7-2-53)

qw _ St,%zv,AI'.: (7-2-54)

•I, is determined by formula (7-1-19) or by the approximation formula (7-1-25).
S
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FIG. 7.9. Distribution of pressure and Stanton number on a flat
surface in the zone of shock interaction with a turbulent boundary layer.

M 0=2.51;v 0 = 572m/sec;P0 = 0.11kg. sec2/m 4 =0.41kp/cm2; 1-
incident shock; 2--boundary layer; 3--rarefaction wave; 4--shock system;

5--separation zone. Experimental points: •--15 ° wedge; o--boundary

layer without shock.

FIG. 7.10. Heat flux distribution for interaction of a supersonic jet

with a fiat surface. M 0 = 2.27 in the Mach number at the nozzle exit;

n = PUPa = 0.8 in the off-design factor; ]" = 1/d c = 3; _ = 90 °; k = 1.14.

It must be kept in mind that when compression shocks occur in a supersonic
stream, the shock has a substantial effect on the intensity of the heat transfer.

Shown in Fig. 7.9 are the results of measuring the local heat-transfer coefficients

in the zone of shock interaction with a turbulent boundary layer, done by Yu. V.

Baryshev [7]. As can be seen from this figure, the shock can increase the heat trans-
fer coefficient by a factor of 2.5.

Analogous results are obtained for interaction of a supersonic jet with a flat sur-
face. Presented in Fig. 7.10 are the experimental results of I. K. Ermolaev and

V. A. Fadeev [27].

For the subsonic gas flow region, Ai z --_CpAT, U<< I and Eqs. (7-2-50) and
(7-2-51) change to

-- I

Re°*r = a--V '[ )l_----z B l_e_, _ 'F= -=,. _"_ T --" Iz=xl I
/

(7-2-55)
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Accordingly, for an axisymmetric flow

Re'r--- A-_
2I_" B Reo

For flow around a plate with a constant wall temperature and turbulent boundary

layer generation at the leading edge of the plate, we get from Eq. (7-2-49)

I

I q- ,'n m+n

Re'rw -_ [ 2--p-_- BCFs_ Re,w ] ;
(7-2-57)

t

Bq._+t m
Re m+l .

When m = 0.25 and B = 0.0256

(7-2-58)

Stz= 0,0_8 _s)'" Re-°'2 Pr-'.',
mW (7-2-59)

where q_ is determined by formula (7-1-19) or (7-1-25).
S

For flow around a blunt-nosed body with a constant surface temperature we have

!

-- r i -t- m B q. c_ -1 ,n+n . (7-2-60)Re'rw--t2P" l_e.,w s= 2 j '

• I

B SPs
Sh-" 2 P,'." ,n (7-2-61)

[,+m c ]._,gN.-y_ S _ i'- Re,, w

In particular, for the case of transverse flow around a plate with m = 0.25,

B=0.256, n=0.75, c = 1.0,

St -_- 0,0375q_ 8 (l_eo,w) - *.'z -* .' Pr -*.° (7 -2 - 62)

Whenever the specific heat flux distribution is prescribed the energy equation can
be reduced to the form

d (Re**r_i s) I qw.. &
Pc** _,,

For the boundary conditions ** =ReT0 ° 0 at_=0wehave

(7-2-63)
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m

Re'*roo= ReL® vw:d 
q.wi

(7-2-64)

When the heat-transfer law is conservative to the heat load distribution we get

St, -[ nvs j ReL®
(7-2-65)

In the case qw = const and Re*T* = 0 at x = 0 we have

Re** r ----Stl_e_ (7-2-66)

and

| m

St** --A'+lRe; m+,. (7-2-67)

Taking B/2 = 0.0128 and m = 0.25, we get from Eq. (7-2-67) an equation which was
derived earlier for the case of flow around aflat plate. Thus, from the condition of
heat-transfer law conservative to a change in velocity around an immersed body it fol-
lows that for any laws of velocity variation and for a constant thermal stress the equa-
tion for a fiat plate will hold if the local values of the free-stream parameters are
introduced into the Re . It is easy to demonstrate that this conclusion can also bex

applied to the more general case of an arbitrary heat-load distribution.

7.3. Conservative Properties of the Heat-Transfer Law to Changes in Wall Boundary
Conditions

In Chapter 6 it was shown that the heat-transfer law is more conservative to
changes in the longitudinal pressure gradient than the frictional drag law, and for
practical thermal boundary-layer calculations the effect of the longitudinal pressure
gradient on the heat-transfer law can be disregarded.

An analogous result is also obtained when the heat-transfer law is affected by
changes in the thermal conditions on the heat-transfer surface (i. e. in the laws of
variation of wall temperature or thermal stress). Given in [72] are the results of an
experimental investigation of the effect of changes in the boundary conditions on heat-
transfer laws in the ease of flow around a fiat plate.

A diagram of the experimental section is shown in Fig. 7.11 and the laws of

distribution of Tw and qw over the length of the plate in Fig. 7.12. The experimental

data were processed by the method of local simulation [70] in the form of the relation

St 0 = f(Pe**T), where Pe** T = Re**TPr;

/145

112



qw _d_

St,- "r.=.c,,,(rw-- r.) ; _'*r = "f.=.C,,,if,.,,-- r.) ;

Pe**r---_ =_J°*r_e

4

(7-3-1)

The results of processing the experimental data are presented in Fig. 7.13 as can
be seen from the graph. All the experimental points, except those of the last two

modes, fit, in general, relation (2-6-4), regardless of the form of the boundary
conditions.

A .

4 3 2 !

• vv vvvvv V 

FIG. 7.11. Diagram of the
experimental section for

investigation of the conser-
vatism of the heat-transfer
law to variation of the

boundary conditions: l--

Prandtl tube; 2--flexible

band; 3--calorimeters; 4--

ejector for boundary layer

suction; 5--band adjustment
values.

4f_
x_

FIG. 7.13

FIG. 7.12

FIG. 7.12. Variation in wall temperature, °C, over the len_h of a plate for various

boundary conditions [72]: 1--AT = const; 2--qw = const; 3--AT = b + d0x; 4--qw

= q0 exp(k_); 5--AT = b - d0x; 6--qw = q0 sin (_).

FIG. 7.13. Heat-transfer law for various boundary conditions [72]. The quantity
St 0 • A is plotted on the ordinate axis: 1--A = 1; 2--A = 2; o--AT = const; A-AT

= b+d°x; O-qw = q0 exp (lo2); + -q0 = const; x - AT = b - d0x; _--qw = q0 sin (v_).
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The graph reveals that the experimental points are clearly stratified as a function

of the boundary conditions and are in satisfactory agreement with the corresponding
analytical relations obtained by integrating Eq. (7-2-49) for given boundary conditions.

The integral in Eq. (7-2-49) for a given law of wall temperature variation has the
form, taking (2-6-4) into account,

_e°e T _ (! +m) Bi_e L AT,+.,d_
2Pr*.,_

o

I

I+m

(7-3-2)

and, accordingly, for a given heat stress distribution

_ "),
il÷m • (7-3-3)
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FIG. 7.14. Dependence of St 0 on Re x for

various boundary conditions: 1--formula
(7-3-4); 2--formula (7-3-5); 3--formula
(7-3-7); 4--formula (7-3-6); o--AT

= const, A - AT = b+d0_; •--T w = q0

exp (k_) ; + -qw = eonst.

From Eqs.

a) for the case AT = const

(2-6-4), (7-3-2) and (7-3-3) we get:

b) for the case AT = d0x

c) for the case qw

d) for the case qw

o. o2_as

St.-- _-e'2 pr,_.6 ;

St, -- O,0338
ReO,2 prO.6 ,

= const

0.03@6

St, = _ ,_.2pr_.6 ;
K¢_

= qo exp (k_)

St,_._. 0, 0306(k2;0 ." ( expk2 ) °.2 .0 2 pr(I.6Re._' exp k2 -- I

(7-3-4)

(7-3-5)

(7-3-6)

{7-3-7
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e) for the case qw q0s,o(+,)
f x,f x 0,9.

_i
St,= ReO.2 prO.6 ,

L

:'oC -I
t

(7-3-8)

FIG. 7.15. Heat-transfer law for the initial section of the pipe;

curve calculated by (2-6-4): the points are from [150]; A- qw

=q0sin, ,(_-_/; _ -qw =q°exp (a_); O- qw =c°ast"

FIG. 7.16. Distribution of the local values of the Stanton number

over the pipelength is the expiments of Hall and Price [150]. Stf -

Stanton number determined from the wall temperature gradient

and the mean mass temperature; A - q_v = q0 exp (ax); x - qw = q0
t

• &

sin ,--'-_ /-': o - qw = coast.

The results of an analogous processing of the experimental data of Hall and Price
[150] which were obtained for three different heat-supply laws, are given in Fig. 7.15.
The initial data for the distribution of local heat-transfer coefficients over the pipe
length are shown in Fig. 7.16. The experiments were carried out with a developed
dynamic boundary layer at the pipe inlet and with relatively small temperature drops.

In such a case the variation of the gas parameter over the pipe length can be disre-
garded and formulas (7-3-6), (7-3-7), (7-3-8) can be used. As is evident from Fig.
7.15, the experiments of Hall and Price are in good agreement with heat-transfer
law (2-6-4) for all the boundary conditions investigated.

A comparison of the experimental data with (7-3-6)-(7-3-8) is given in Fig. 7.17.
It is interesting to note that in the experiments of Hall and Price the thermal and
dynamic boundary layers did not develop simultaneously, but the computational re-
sults obtained assuming a consecutive heat-transfer law are in satisfactory agreement /149
with experiment. This conclusion receives further confirmation by comparing the
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FIG. 7.17. Distribution of the local values of the

Stanton number over the length of the initial sec-

tion of the pipe. 1--calculated by (7-3-6); 2--by
(7-3-8); 3--by (7-3-7); the experiments of Hall

and Price [150] : O--qw = const; A--qw = q0 sin

(T_); _--qw = q0 exp (a_).

results of calculating the heat transfer by the proposed method with the experiments of
Eichhorn, Eckert and Anderson [136], in which measurements were made of local heat

fluxes for flow of an air stream past a fiat plate. The plate had an initial heat-insu-

lated section of length x 0 and a subsequent linear variation in wall temperature over
the length:

AT--d(A_ iX -- X.). (7-3-9)

The heat-transfer law for the laminar boundary layer can be written as

_ 0.22
• Re_' pr_3 (7-3-10)

Then the solution of Eq. (7-2-49), taking (7-3-10) and (2-6-4) into account, can be
represented as follows:

a) for a laminar boundary layer

/150

d (at) (7-3-11)

b) for a turbulent boundary layer

qw _ !,18 (1 _ __.) °.* "
Pt hI3k _ .0.0296 Re°'s

(7-3-12)

Given in Fig. 7.18 is a comparison of the experiments of [136] with formulas
(7-3-11) and /7-3-12). Also plotted in this graph are curves calculated for an isother-

mal plate. It can be deduced that in this case also the assumption of heat-transfer laws

stable to a change in the boundary conditions is fully applicable.

The results are in agreement with an analysis of the conservative properties of a
turbulent boundary layer made by V. M. Ievlev [30, 31]. According to Ievlev, the

relative error in St 0 stemming from disregard of the boundary condition effect on the
heat-transfer law is defined by the inequality

aSt _0,i [ 'e"r d(ar)] (7-3-13)S-'--_ Sto ReL aT d._
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" *) b) x

FIG. 7.18. Effect of wall temperature variation
over the plate length on heat released, a--laminar

boundary layer: 1--calculated by the dimensionless
formula for an isothermal surface; 2--calculated

by (7-3-11); b--turbulent boundary layer: calcu-

lated by the dimensionless formula for an isother-
mal surface; 2--calculated by (7-3-12). The points

are the experiments of [136].

or

For the boundary conditions qw = q0 exp (k_) we get

exp (k_) -- I
-ast _0,1 _-_St.

• St _0,1,
St,

sincek >0, 0<_<1.

An analogous result is obtained also for AT = b + d 0_. In this case

and
Re"r d(_r} :0,55 [1 _ ( b J'_l (7-3-14)Ste Re L _T d2 ds2 -or b

a_
-gC _ o,o55.

But the error in determining St 0 increases if the boundary conditions correspond
to a decrease in wall temperature or heat flow over the plate leno_h. In particular,

for the case AT = b - d0x, we get

Re*'r d (aT)_0,55 [( b )2_ ]St, ReL aT d2 b -- d,_ _ 1 , (7-3-15)

b I "-" 1 we find ASt/St 0 _ 0. 055.and, since #--d,i _

This conclusion is supported by the experiments in Fig. 7.13. The methods of

calculating a turbulent boundary layer for similar conditions are presented in Chapter 9.
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FIG. 7.19. Platewith ini-
tial heat-insulatedsection
(Pr = 0.72).

In some cases the dynamic and thermal boundary

layer do not develop simultaneously, even when Pr = 1,

6 # 6T. Let us examine flow over one plate with an

initial heat-insulated section (Fig. 7.19) of length x 0,

at the station x = x 0 heat begins to be exchanged between

the plate and the gas. The thermal boundary layer
forming in the initial section is submerged in the

dynamic layer. Setting Pr = 1, p = P0, fiT = 0, 1T = 1,

= q0 and 5 > 6T, we reduce Eq. (2-1-12) to the form

O0 (7-3-16)q.st=

/152

On the other hand, for these conditions it follows from (1-3-6) that

(7-3-17)

From these equations, taking _0 = q0 and integrating, we get

2 St
¢t--'_ (=r -- ",.) = ! -- _.." (7-3-18)

Taking (2-3-10) into account,

The dimensionless temperature difference at the boundary of the viscous sublayer,

assuming that q0 is constant in this region, is

V_tas=St_ro
(7-3-20)

or

0 2St Pr ,-
,. = _ ... (7-3-21)

Substituting this value of 010 into (7-3-18), we find that when Pr = 1

2St t (7-3-22)
_ _o

cje e_T

Let us assume in the first approximation that the conservative properties of the

heat-transfer law can be used to determine Re** T. Then, for n = 1/7 and Pr = 1, by
integrating the equations

dRe**r 0,0128

dRe= -- ge_'V.25
(7-3-23)
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dRe*" o,o128 (7-3-24)
d Re,,. Re"O._

from x 0 to x in the first case and from x = 0 to x in the second and assuming in the first

approximation that 5**/5 = 5**T/ST, we get

-r._ $ } • (7-3-25)

Accordingly,

•3t f _ o"* (7-3-26)
•

Given in Fig. 7.20 is a comparison of the experimental data of Reynolds, Kays and
Kline [199] with (7-3-26). As can be seen from the graph, the first approximation

yields completely satisfactory results. Taking into account Eq. (7-3-26) and the

assumption Re** T = (5T/5) Re**, we get a correction to the heat-transfer law in the

first approximation:

0.0128 -- •

k

,.,\

1,z

z

q 12 Ij t._ 1.5 I,¢

FIG. 7.20. Heat released to a plate with an initial
heat-insulated section. The curve was calculated

by (7-3-26); the points represent the experiments
of [199].

or

_= k--_-j , (7-3-28)

where

The second approximation does not add much to the accuracy of this result.

The results of calculating the ratio St/St 0 by (7-3-28) are presented in Table 7.3.

Introducing the correction into the Prandtl number, it is convenient to write
(7-3-26) as

0,0_ f_-_.'_'.'"
(7-3-29)
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Table 3. Data of calculation by (7-3-28)

o,,Io lo lo 
or

(7-3-30)

where

_A" w, (z--v zJ .. SuA .= e(z --)._).

Thus, for x/x 0 > 1.7, it can be assumed, with an error not exceeding 8%, that

N"A-- o,o2ese,,°,'_,.". (7-3-31)

But if as the characteristic dimension in Eq. (7-3-31) we take the total plate length,
the error with x/x 0 -- 1.7 will be about 30%. For the average value of the Nusselt
number we get from (7-3-31)

•N-"_,k-- 0_7_e,°"_".'. (7-3-32)

a

6

¢

,j J o, f

4 6 m _ 2

ge_,

4 6 m 2

FIG. 7.21. Comparison of the experimental

data on heat transfer to a plate with (7-3-32).
The dashed lines represent calculation of the
initial laminar section.
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Formula (7-3-32) was proposed by M. A. Mikheev [74] on the basis of a generali-
zation of the experimental data on heat transfer with an advance heat-insulated section.

The results of this analysis are presented in Fig. 7.21.

7.4. Friction and Heat TrRnsfer for Gas Flow in the Initial Section of a Cylindrical

Pipe with Impermeable Walls

In the inlet section of a pipe the boundary layer develops as in external flow past
a plate until the boundary layers, increasing on opposite walls, intersect. Therefore,

in order to calculate the processes of heat and mass transfer and of friction in the
inlet portion of a pipe we can use all the methods presented above for calculation of a

turbulent boundary layer. The difference between this "inner" problem and outer flow
consists in the fact that the gas velocity at the outer edge of the boundary layer is not

a given parameter, but one being sought. To determine this velocity in the inner
problem, however, we have an additional relation, the equation of constant mass flow
over the length of the pipe.

R qy¢

x,, r_ [

FIG. 7.22. Diagram of fluid
flow in the initial portion of

a cylindrical pipe (Pr = 1).
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Consider a flow of gas in the initial section of a cylindrical pipe (Fig. 7.22). The
distribution of velocities and temperatures at the pipe inlet is taken to be uniform in

cross section. We shall assume that the dynamics and thermal turbulent boundary
layers grow simultaneously from the initial section of the pipe downstream.

The continuity equation is written as

_,_,,=2 _ _,RdR -----coast,
8

(7-4-1)

where P01 and a)01 are the density and velocity of the gas in the initial section of the
pipe.

For a cylindrical pipe

,,
0

(7-4-2)

Then the continuity equation is written as /156
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_,w,,--'p,_,(|--2_---:), (7-4-3)

where P0 and co0 are the density and velocity of the gas in the flow core at section x.

Taking into account the dependence of the gas density on the dimensionless velocity

i

- . _--=(I--U") _T" (7-4-4)

we have

I

(7-4-5)

Introducing the shape parameter H, we get

i i'

(7-4-6)

where Re_ =po._nax_/_oo; Re**.. = pow.a**/t_ee.

The momentum equation is written in the form

B f_w_ _ l
dRe****d_+ Ite***odUud_(I+ H) = U (I- U')t 'X¥m'-2- _-_-_,oJ-_--_-_---_"ge. (7-4-7)

For the supersonic gas velocity region at the pipe inlet the flow will always be
divergent, but at small values of M the value of the shape parameter f will not be

greatly different from zero. As can be seen from Fig. 4.6, the shape parameter

• H'=_-_ l-.w,] p, dy
(7-4-8)

is much less dependent on the nonisothermicity parameters than the shape parameter H.
The shape parameters H and H' are interrelated as follows:

where

Then

,(  o..To)I--U' U' + _ H'r Re**,-"-'_ '

_r

H'T----_I (I--_)-_dy-
Q

(7-4-9)

,[ (H=.l_--z_ U'TL 3 l-- TT, ; (7-4-i0)
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_eSOoo

I !

Re,o[(l--Uz) *-I U--(I--U_)*-' U,J(I--U:)

4[U'+ 1,3lx--7"w--Tw_ 11
(7-4-11)

and the momentum equation is rewritten as

d Re**. Re*'. [ (a_ -+ u(a u,) _+_ 3 x r'w.--rw_l du- . - r.. jj- -
!

B [ Pw _ " 1 *--'%-
-- -_- _'*ok-_-_-'N) R-_ U (I-- U') Reoo.

oo

(7-4-12)

SubstitutingRe**00 from (7-4-11) intothisequation, we get

, '--LI=

I I

-{-U I] [(l--U2) k-_ k_------| UI(|__UI)k'--_i-_I_:_.]U|

I i I

X (_- v_)*---F]--I(_- u')i_i-U- (_- v,)u, (n- u_)_-i-I

]'+"
X2U Ui IUll U,)k-_ --U,(l u' _

- - ,) (_- u,),,,.
- )+"'1

x[, "-_'-
( I"X 4pw U (I-- U2)t_----i-d2.
I%o Re,,

(7-4-13)

In solving (7-4-7) we can set

Re*'z'°_ H' r =/I T = H, = 1,3.
Re**_

With a specified law of wall temperature variation and velocities and stagnation
parameters at the duct inlet, it is possible to determine the law of variation of the
dimensionless velocity U over the length of the pipe from Eq. (7-4-13). The local
values of Re**00 are calculated by (7-4-6). The local values of the friction coeffi-
cients are determined by the formula

,', %, too j '

(7-4-14)

where • is taken from (7-1-19) or (7-1-25).
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The static pressure distribution over the length of the pipe is found from the
formula

P* =" U -- U,)I=T-, (7-4-15)

where P00 is the stagnation pressure in the flow core, which remains constant in the
initial portion of the pipe.

It should be noted that the proposed calculation method is valid only for the con-

ditions of shoekless entry of gas into the pipe. The thermal boundary layer is calcu-
lated analogously.

The energy equation has the form

I
d Ree'roo Re"roo d(Ai)

d2 --t- ai d2 -- ReooU {I -- Us)_'l

X 2(Re**rm) mpr"

(7-4-16)

The integral of Eq. (7-4-16) is

] .s(__+ i) I r=r"'--= L ._Pr- Reoo U ( I -- U2)
(7-4-17)

Substituting into (7-4-17) the dependence of U on 2 obtained above for a given law
of variation of Ai over x, we determine the local values of Re** and the local values
of the Stanton number by (7-2-53). Too

It should be kept in view that all the formulas are valid only for the initial section
of the pipe. At the end of this section the boundary layers intersect, i.e. the boundary-

layer thickness becomes equal to the radius of the pipe. From Eq. {7-4-5) it follows
that the following equality should be satisfied at the end of the initial reaction:

!

ui,.,(l- u_) r:r"
, =CI--2_-: H) ''' (7-4-18)

u, (_- v_) -_--r

where Uin is the dimensionless velocity in the core at the end of the initial section.

Substituting 5**/R 0 and H as functions of ¢ * and A¢ into (7-4-18) and taking rela-

tion (7-2-37} into account, we get an equation in Uin. Substituting this value of Uin into

the integral of (7-4-13), we find the length of the initial section _in"
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For the region of subsonic gas flow and constant wall temperature, a solution can
be obtained in analytic form. In this case, U 2 << 1 and Eq. (7-4-13) reduces to the
form

l(t + t._) (1 +m) + II d_° -- (t + ,._)

× (e,- t),+...= 2B%ot'4 _-_--'_'(x+ t.3¢)_.

(7-4-19)

Setting m = 0.25, B = 0. 0258, taking Eq. (7-1-23) into account, we get (_0=w0/w01)

[(t + t,:H,) t 25+ 1] [4 (e_ - I),.,,

(e.--tp.. + I/'T(m. -- 1)..." + t ,,,_. . 1/T(m.-1)..,,']

--In (m.--I)'.'--g_ (_.--x)..,'+I--v z arctgI--_.--T_.'J (7-4-20)

(i_.- 1)'." O.44'.' sZ

- 0 + t._) _. = (v'_-+t),R,_ "

Accordingly, Eq. (7-4-10) reduces to the form

H-,_H,- 1.3¢ (7 -4- 2 1)

and Eq. (7-4-11) to the form

Re.(_.--t) (7-4-22)
Re**---- 5._ "

The local frictional drag coefficients are defined by the formula

0,02S6
el'-- W Re--_ ' (7-4-23)

where ,I, is calculated by (7-1-21) or (7-1-23).

The length of the initial section is determined from (7-4-18), which, for the con-
ditions under study here, is written as

• in-----(I--2 _--_-f/)- (7 -4-24)

or, taking (7-4-21) into account,

Win == (I a** \ -" (7-4-25)

From Eqs. (7-4-20) and (7-4-25) we get the dependence of the length of the initial

section on the gas parameters at the pipe inletand on the nonisothermicity parameter
¢:
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0oliReow 5

_in_ W0'0725HI" _ (I Jr H) T Jr I 4 (_in- I)*'*i

- I (i_in -- I) °'8 -I- _ (win -- I) °'_s -_" I

l:i- (_in -- I)o.' - VY (_in - D°." + I

I/_"(_in-- ,)'." ] ('in-- ')'" 1--]F2"arctg l__(_in__l)i.6 --(l +H) mo "

(7-4-26)

The results of solving this system of equations are approximated quite well by the
following simple formula:

_n _ 0.8_+0.55
R--_ _..,_ , (7 -4-27)

where

Re o=. _D_. ° ' _ _ .

For the case ¢ = 1

3in =- 1,35 Re 0"25. (7-4-28)

The question of experimental determination of the length of the initial section is as
yet insufficiently clear. Thus, in experimental work [4, 151] the length of the inillial
section was determined from the change in local Nusselt number and local heat-trans-
fer coefficient over the length of a pipe. The pipe cross section where these data ex-
ceeded their asymptotic values by a certain value (5% or 1%) was taken as the origin
of stabilized flow. Such a method cannot yield satisfactory results, since it does not
take into account the particular features of boundary layer interaction with the flow
core; as a result, the heat-transfer coefficient in the initial section may first decrease,
and then increase again [151]. Compiled in Table 7:4 are the results of some investi-
gations to determine the length of the initial section. From this table it can be seen
that even for a quasi-isothermal gas flow (AT -- O) great discrepancies exist between
the data of the various researchers.

1,0

0_

'l'Ol,l',',-Illl l l I 1 1111I _/i
,,,llllll 1 I 1__'_i" i
IwJ'l I I 111 1 lit ----'_'_- : " 7 " I I

[ I l Ill !A i " , 7]: i I

III [ti /_o? ] ! ] " • ; I
l fl' ' " ' 7]_i "

_T_ t ttf ,,,i
-- 12" @ ' $ _ @

FIG. 7.24.

FIG. 7.23. Effect of cooling on the length of the initial section of the
pipe. Curve calculated by (7-4-27); the points represent the experi-
ments of [67].

FIG. 7.24. Effect of the Reynolds number on the length of the Initial
section. Curve calculated by (7-4-27); the points represent the
experiments of [67].
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Table 7.4. Determination of the length of the initial
section

' ! Me- Ex-perl-mental i

Liquid Range of Re ,_ z i 'l:b.o,d_ condi- Source
1 _lons

Water

Air

Air, CO 2

Water
Water

Air

Air

i,7.104--9.104 110--15:

2,7-106 : 12

5-10*--2,5"10 s I I1--_
I

10"--I0' I 40--20

4,9.10"--6,5-10" ' 14--20
3-10*--4,2.10 _ t 16--17

6,9-10'--2,4.10 S 7,9--__

1

.-I, :. =ccnst [ 151]

A [l lt
A, iq,,=¢o._tl

.-!, :Tw=cOnst; f14_9].4 z i i **

As I t [61"**

A, irw=const Auth°rtSdata

*Methods of determination: A1 - from the change of the local

heat-transfer coefficient; A2 - from the change of the local pres-

sure gradient; A3 - from the remits of comparing the stagnation

enthalpy and the velocity, as calculated for the initial and main
sections; A4 - from the change in enthalpy on the axis of the pipe.

**The length of hydrodynamic stabilization was determined.

The data were taken from an analysis of the graph in Fig. 7 from
[ 189].

***Determined were the lengths of thermal and hydrodynamic
stabilization.

Given in Figs. 7.23 and 7.24 is a comparison of formula (7-4-27) (for k = 0.64)
with the experiments of A. I. Leont'ev, B. P. Mironov and A. V. Fafurin [67].

Measured in these experiments was the length of the initial thermal section; for the

case ¢ = const and Pr = 1 it is equal to the length of the dynamic initial section.

The length of the thermal initial section was determined by the following method.
The energy balance equation for a pipe segment of length x can be written as

,.,.., l;,e = a,,+•! 2pziR dR
(7-4-29)

For the conditions being considered here we can take 5"* T = 6**; then the follow-

ing equality can be written for the main section of the pipe:

I_=,=" ao. • (7-4-30)
1 2H -m-.

Then, taking Eqs. (7-4-21) and (7-4-29) into account, we get

J,--'----T_wl--'-_-_-'
(7-4-31)

where

#-- R, ; S = G (is,--iw) Qw'
--HA I

127

/162



Here Qwi is the quantity of heat absorbed by the i -- calorimeter; b is the mass

gas flow through the pipe.

In the initial section, i 0 = i01, by definition, and the condition (i0t - iw)/(i0 - iw) = 1
must be fulfilled; accordingly

N = S. (7-4-32)

The experimental data were processed on a computer. The pipe cross-section for
which equality /7-4-32) was fulfilled with an accuracy of ± 1% was taken to be the end of
the initial thermal section. As can be seen from Figs. 7.21 and 7.22, the proposed
calculation method is in satisfactory agreement with the experimental data. From an
analysis of the results obtained it can be deduced that the length of the initial section
increases substantially with increasing Reynolds number at the pipe inlet.

Pipe cooling has a relatively lesser effect on the length of the stabilization sec-
tion. In the 1 to 0.08 range of ¢ the length of the initial section decreases by a total
of 30%.

The dependence of the parameter _ Re -°" 25 on w 0 and ¢, as calculated by (7-4-20),
0w

is shown in Fig. 7.25. The length of the initial section was determined by (7-4-27).
Given in Fig. 7.26 is a comparison of the results of calculating the mass-flow function
q(U) by (7-4-20) with the experimental data obtained from a measurement of the static
pressure distribution over the pipe length in [67]. As can be seen from the graph,
satisfactory agreement is observed between the proposed method of calculation and
experiment. From (7-4-17), taking (7-4-20) into account, we get

he3

{ 1.25 + 1.62_Reo (_o -- I) (2 + 1.34,) -- (.Wo-- 1)n'2a'Re'°r -- 5, 2_

_2 (_o - l)'."X 4 (_o-- I) O'ffi_- $/'2"arctg i -- (_0-- i) °.+

--I)°,"-F-I ]} '''.! I, (_,- x),., + I/_ (_, =_ .V i- (_, - n),.' -- I/_- (_, x

(7-4-33)

Thus, the following relationship exists between the energy loss thickness and the
momentum loss thickness for a gas flow (Pr = 1) in the initial section of a pipe with

a constant wall temperature:

-_ { I ' 25 "}"I'6'_ [4 ($.' l)°.n'= (2 + 1,3_)-- (_,_ |)_,_
I (_o -- I)*.' -I- V'2" (,Y,-- l)'.i' -I-I

- --_- n, (_._ n)..,- IcE (_.- I)..,, + l

i -- (._,-- l)"' JJ "'°"
I

(7-4-34)
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Shown in Fig. 7.27 is the dependence of 5"*T/6"* on the parameters x Reo°w 25
and ¢.
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FIG. 7. 25. Effect of wall cooling on
the velocity distribution in the flow

case over the length of the initial sec-

tion of the pipe. 1--¢ = 1.0; 2--0.6;
3--0.4; 4--0.2; 5--0.137; 6--0.0875;
7--0.044; the dashed line indicates

the length of the initial section

according to (7-4-27).

'j

o o2 _+ o.6 o.8 I.o _.2 _,_

FIG. 7.26.

I r p,.mo /

o _ I,o

FIG. 7.27.

FIG. 7.26. Comparison of the results of calculating
the mass-flow function q(U) with the experiments of

[67]: 1--¢=1;2--0.6;3--0.2;4--0.044.

FIG. 7.27. Effect of heat transfer on the ratio of

5"*T/5"* in the initial section of the pipe: 1--¢ = 1;

2--0.6; 3--0. 044.

As can be seen from the graph, we can take Re** T = Re** in the re,on ¢ < 1.

view of this fact, a convenient method can be proposed for generalizing the experi-
mental data on heat transfer in the initial section of a pipe [61].

In

From (7-4-16) it follows that

" iqwdX

Re,,roo _ o
1._i •

(7-4-35)

In addition, we have the relations
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•Re_oA/ ; (7-4-36)

!

Reo =U (I -- U') _---:l"Re..; (7-4- 37)

P
_.. - It- v,)j-2T

(7-4-38)

Thus, by measuring the static pressure distribution over the pipe length, the wall

temperature, and the heat flux, the experimental dependence of St on Re** T can be

constructed by (7-4-35)-(7-4-38). If the static pressures are not measured in the

experiments, then, taking the equality Re** T = Re** into account, the Stanton number

can be determined by the formula (for the region M << 1)

qwO (7-4-39)
St_ (ReD I nt" 5,2,_ Re**r,_j ) _.oo*,i

Presented in Fig. 7.28 are the results of an analysis, by this method, of the ex-

perimental data of B. S. Petukhov [85], V. L. Lel'chuk and B. V. Dedyakin [36], I. A.

Kozhinov, S. I. Kosterin, A. I. Leont'ev and V. K. Fedorov [54]. All the data have

been reduced to thermal insulation conditions by the formula St0 - St/'l'=.

A mean line drawn through all the experimental points is described by the formula /165

0.014 (7-4-40)
St,= RerJ._ Pr'.'= ,

which coincides with the relation

Cfo
St°---- 2Pr'. '=" (7-4-41)

for Cfo/2 calculated by (1-10-3). The result confirms that the laws of heat transfer

and friction are common to the inner and outer problems of aerodynamics.

Shown in Fig. 7.29 are the results of processing, by this method, the experimental

data on heat transfer for pipes, nozzles, plates and missile nose cones. These experi-

ments cover a broad range of M and A ¢. Despite the considerable scatter of the ex-

perimental points, they all fit around a line corresponding to (7-4-41).

Itshould be noted that in generalizing the experimental data on heat transfer in the

initialsection of a pipe it is necessary to devote serious attention to the pipe inlet

conditions. The results given in Fig. 7.28 of generalizing experimental data by the

proposed method indicate that the inlet conditions have an appreciable affect on the law

of heat transfer in the initialsection of the pipe, but the method outlined below for

calculating a thermal boundary laver remains valid for these conditions also, except

that the coefficients B and m are changed [61].
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,_4 2j 2_ J.o 3,? $.4 _ _8 _D 4._ 4.4

FIG. 7.28. Results of generalizing the experimental

data on heat transfer in the initial section of a cylin-

drical pipe: 1--turbulent layer st.= 0.0mpe..o.2s_o,s ; 2--

0.22 .
laminar layer st.=_, O--experiments of B. V.

Dedyakin and V. L. Lel'chuk [26]; A--experiments
of B. S. Petukhov [85] ; O--experiments of I. A.
Kozhinov, S. I. Kosterin, A. I. Leont'ev and V. K.

Fedorov [51]; a--experiments of A. I. Leont'ev,

B. P. Mironov and A. V. Fafurin [65].

o

, 4_,o_- !I t l"J

$._ _ 2,8 S..o J7 4_ g6 g8

:oo (

FIG. 7.29. Results of generalizing experimental

data on heat transfer in a turbulent boundary layer
of compressed gas. 1--turbulent conditions

0.0143 0,22

St.=pe,,.O,25 prO.5 ; 2--laminar conditions st. = pe,_prl/3

experimental data: _--V. K. Fedorov (pipe); @--
Pappas (plate): _7-- Fischer and Noris (V-2 nose

cone); _--Eber (cone); @--B. S. Petukhov (plate);
_]--Bradfield (cone); CIt--A. I. Leont'ev and B. P.

Mironov (pipe): &--B. S. Petukhov (pipe) ; + --
Fallis (plate); O--V. L. Lel'chuk and B. V.

Dedyakin (pipe); O--B. A. Sveshnikov (pipe).

The equation of a thermal boundary layer for the initial section of a pipe (M << 1)

can be written conveniently in the form

d Pe'" d
d2 T Pe*"_ [in(I--_)]_ StPep, (7-4-42)
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where

Taking into account Eqs.

dPe*..._.__* .. d+ P_ -_ It. (i ' ÷)!

i_'.= ..a;-r/o.; mo= ._/...

(7-4-3) and (7-4-5) we have

s

= St. _', (Pem + 5,2t, Pe"). (7-4-43)

where

]_DI :m _*OtD/ao .

For the case + = const

d Pe'" B (Peol + 5.2_ Pe")
" 2 (Pe"=) Pr'.' _'" (7-4-44)

Taking m = 0.25, with allowances for (7-4-44) we get

2 Pr'.' "" 14 pe",., ' Pe_

J=" .(l_+r)(_)B2- _ "" -, { 5.2¢ Ir_-(5.2,),.,,
io

[ + r
X in . (7-4-45)/

• _ s. 2,1, ',,_ /

. "_ s.2,1, /

+.2arctg{ pem \... .. _ .
_,_/ --Pe '."

The Ioc_ values of Pe** are calculated by (7-4-45) for given gas parameters at the

duct inlet and for given wall temperature.

The local values of the Nusselt number are determined by the formula

Nu =- 2 Pr'.'Pe'"." (Peru + 5,2_ Pe"),
(7-4-46)

This method of calculation can also be applied to the case of flow of a dissociating

gas in the initial section of a pipe. As shown in [ 65], the limit frictional drag law for

a "frozen" boundary layer of a multi-component dissociating gas is obtained in the form

St -- Xew re" h .
v':'4(V_'+l)-'; ¢;=" l-r_.÷_ ; -_-_-"

=" t"_" -_o ; is== Cpdr + i_.i

(7-4-47)
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Taking the effect of finite **Re T into account,

|| • 0

(7-4-48)

Equation (7-4-47) was obtained under the assumption that the density of the
gas can be determined by the formula.

• (7-4-49)
h ÷,- _,_ + _, -_,- _._.- _),_ }_

It is interesting to analyze the effect of gas dissociation on the integral character-
istics of the boundary layer.

It is well known that the physical displacement thickness is related to the dis-

placement thickness in Dorodnitsyn variables by

,.-,.oS(+. (7-4-50)

Taking (7-4-49) into account we get

R.

8._8.o" _ (i--_tia_ j--(i*°--_toi°) ( ,- ¼)
Q

(7-4-51)

and

{ , }a'=a*° ! 1- _, ,_o i[1--4,--_,(_o--%),4_°I , (7-4-52)
-. ,. ,iO.rt;

from which we find

H = H,¢.,

where H I = 6"D/6"* D, and where 6"* D = 6"*.

(7-4-53)

Shown in Fig. 7.30 are the results of c._lculating the parameters of an axi-

symmetric turbulent boundary" layer under the assumption that w = _ n(n = 1/7) and,

using (7-4-49), for the density. As can be seen from the graph, the parameters 6"

and 6" D depend greatly on the nonisothermicity and degree of dissociation of the gas,

but the shape parameter H_ = 6"D/6"* D remains essentially constant, equaling 1. 347.

The results of calculating the shape parameter H under the same assumptions and a

comparison with (7-4-53) are g2ven in Fig. 7.31. Clearly evident in the graph is the

influence of gas dissociation on the shape parameter H.

/168

/169

133



J

¢' ,,
0

FIG. 7.30.
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FIG. 7.31.

FIG. 7.30. Effect of nonisothermicity and dissociation

on the integral characteristics of a turbulent boundary

layer. 1_5"*/5"'0; 2--5**/5**0; 3--5**D/6**D0; 4--

H1/H1 iso; 5--5"/5"*.

FIG. 7.31. Effect of air dissociation on the shape

parameter H. 1--Calculation by (7-4-53); 2--by (7-4-53)
without account of dissociation; the points represent

calculation in terms of integral parameters; all calcu-
lations made for T = 300 °K.

W

Thus, for the boundary conditions ¢_ = const the shape parameter H can be

assumed to be constant over the length of the pipe. As a result, Eqs. (7-4-20),
(7-4-26), (7-4-27) and (7-4-33)-(7-4-35) can be applied to the case of flow of a

dissociated gas, except that ¢_ must be substituted into all the formulas in the place
of the parameter ¢.

For the case of a given constant thermal stress over the length of the pipe, we

have from (7-4-42)

NUIZ

Pe** = l-'_'
(7-4-54)

where Nu 1 = qwD/X01 T01.

In the range of _ = 0.5 to 3.0 the function • can be series expanded and can be
limited to the first term; i.e. we can take

2
(7-4-55)

Then,

Nu, B
St-- Pe_ (I--_) " Pe",.'sPr,.'(l+_)"
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Moreover, taking into accountEqs. (7-4-3), (7-4-21) and the relation Re**

-_ Re** T, we have

Pep= Pem+5,2_Pe*'. (7-4-56)

As a result, we have a system of three equations, (7-4-54)-(7-4-56), with three

unknowns, ¢, Pe** and Pe D.

Solving this system for the independent variable _, we get

JI = 3.36 Nu_l[Nu,Pe'",'_Pr,,S--0,0286Peot--0,149Pe'"

--V (0.0286Peot-l-0. 149Pe'* -- Nu, Pe"prs.s) , --t.- 1,19NutPe"t.'sp_,s].

(7-4-57)

Knowing the local values of Pe**, we define from (7-4-54)

NUl

b=. l+ _-;-. _e. (7-4-58)

This method of calculating can also be applied to the case of an arbitrary law of
thermal stress distribution. In this case it is necessary to use (7-4-42) instead of
(7-4-54).

There exists, in principle, no impediment to also applying this method of turbulent
boundary-layer calculation in the initial section of a pipe to ducts with cross-sectional

area varying with length. The only difference is that in this case we get from the
continuity equation not (7-4-6) but

I I

Reoo [ '-Re",+ = _- u (t - u,) _-' -- U, (l-U,) izi- {R,, _'1

where R01 and R 0 are the radii of the inlet and current cross section of the duct.

(7-4-59)

Hence, the momentum and energy equations must be written in the form of

(7-2-45) and (7-2-51). The subsequent deductions remain the same as for a cylindri-
cal duct.
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7.5. Friction and Heat Transfer with a Stabilized Gas Flow in a Cylindrical Pipe
with Impermeable Walls

Stabilized flow sets in after merging of the boundary layers that arise in the initial
section of a pipe; typical of such a flow for isothermal conditions is self-similar dis-

tribution of all the parameters over the pipe length. For a stabilized isothermal turbu-

lent flow of incompressible fluid the velocity distribution over the radius of the pipe is
described rather well by (1-10-2). The reason for this is that flow in the pipe is con-

vergent with a comparatively small value of the shape parameter f. The pressure drop
in the pipe is determined by the formula

dP. _ p._'
"_'- = _'-_5--' (7-5-1)
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wherethe mean gas velocity is

.. I _ _R dR.

Substituting velocity profile (1-10-2), we find

.,-.:
where

(7-5-2)

(7-5-3)

From this we get the drag law

_-- (In Reo - O.S.O,88 (7-5-4)

In the region 5. 103<Re_< l0s satisfactory results are obtained by the Blasius formula

t: 0,316

(7-5-5)

where Re o :- _DIv.

A power-law velocity distribution with n = 1/7 corresponds to (7-5-5).

Let us determine the shape parameter f for a stabilized flow of incompressible
fluid in a pipe:

8 dP a'" ct (7-5-6)
I=--'w dz a 2"

In the stabilized flow region 6 = R 0 and -dP/dx = 2Tw/R 0.

,_e$

I --T ¢1- (7-5-7)

0,_

1! (7-5-8)

Hence,

When n = 1/7

that is, f< 0. 003 when Re D> 104 and f< 0. 002 when Re D> 105 .

Thus, the effect of a longitudinal pressure gradient on the laws of frictional drag

and heat transfer for a stabilized flow of incompressible fluid in a pipe can be neglected.
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Heattransfer in the region of stabilized gasflow in a pipewith ReD > 104,
0.5 < Pr < I. 5, is determinedby the formula

Nu_ = O. 0"23Re_j8pr':, (7-5-9)

where

NUD= =D"£; = = qw/(T -- Tw); T=-U-

o

p=TR dF; Re,:,.= 4G,:.-I_..

In the presence of heat transfer, a stabilized or self-similar gas flow does not set
in, strict_v speaking, in the general case. The coefficients of friction and heat trans-

fer can change over the len_h of the pipe even after the boundary layers have merged.
Therefore, by a "stabilized" gas flow in a pipe we mean the gas flow downstream from

the section where both the dynamic and the thermal boundary layers have merged.

The limit laws of frictional drag and heat transfer can also be applied to stabilized
gas flow in a pipe, except that then the gas parameters on the axis of the pipe will

correspond to the gas parameters at the outer edge of the boundary layer.

Consequently,

(7-5-10)

where P0, w0 are the gas density and velocity on the axis of the pipe; and Re**
0w

= P0W06**/u w is the Reynolds number over the momentum loss thickness.

From (7-5-I0), taking into account (1-11-2), we have

_w _ B

p,=p022 (Re",w)-__'=' (7-5-11)

In processing experimental data on friction and heat transfer for a stabilized gas

flow in a pipe it is customary to introduce average parameters, which for the gas flow
are defined by the following relations:

T = _ p=TR dR, (7-5-12)

= "-=_ -- wRdR.
fp R_

o

(7-5-13)

We introduce the dimensionless parameters
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I

(7-5-14)

I

Q

(7-5-15)

!

(7-5-16)

where

Then

2f,; (7-5-17)
hw,

i
= 21,; (7-5-18)

wo

a.* (7-5-19)
l_.= h.

Taking (7-5-17), (7-5-18) and (7-5-19) into account, Eq. (7-5-11) can be written in

the form

where Re w = Pw_D/Uw •

It can be assumed in the first approximation that non-isothermicity does not have
much effect on the velocity profile. Thus, for an ideal gas, taking a power-law dis-

tribution of velocities and temperatures over the boundary-layer cross section

(n = 1/7), it is possible to obtain the following formulas for the functions fl, f2 and f3

from (7-5-14)-(7-5-16):

/,-O.40e,_-'J.,*:, 1=,.,0.074_-°. ''=, /_=0.408, (7-5-21)

where ¢ = Tw/T 0.

Taking these relations into account, we get from (7-5-20) (for m = 0.25, B/2

= 0.0128),

tw 0,0¢f316 (;,*.=,=)o.,=_.o,,=Lgo=--_--_'-= _.0.:= •
(7-5-22)
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Consequently,

Thefollowing relationship exists be_veenthe temperature factors _ -
T

W

¢ =-y-:

(7-5-23)

T
W

To and

= "_' = T'.'- (7-5-24)

Then,

From the Reynolds analogy it follows that

|.l (7-5-25)

St _l 2 1 _"

Going onto the Nusselt number and the gas parameters at wall temperature, taking
(2-6-4) into account, we get

--=._o4T(2 1'N_= O.tr_ge w vr w _ -_... +-------_ (7-5-27)

or, if we take _g.._-0.6,

NUw =, o, trzJ_ew rr w , .- (7-5-28)

It is interesting to note that in this case the effect of the temperature factor on the
magnitude of the Nusselt number is less noticeable than on the friction coefficient and

is opposite in sign.

If all the gas parameters occurring in the Reynolds and Nusselt numbers are de-
fined with respect to average temperature, we get

N= _- O.O_JRe'.sPr*."_-*.". (7-5-29)

where

n'--u=. ,,o/x, Re= p_D/;; x,,/_-=_/_'= 0.".

_ =.; _pfi'; (rw- r.)l¢r,,, -r) _ _.

The experimental heat-transfer data given in Fig. 7.32 are from the work of
Perkins and Worsoe-Schmidt [194], V. L. Let'chuk and B. V. Delyakin [26] and

McEligot [177]; they give a stronger dependence of the Nusselt number on
non-is othe rmicity:

N'-'_= O.023R_'.'Pr°. ' _'- ','. (7- 5- 30)
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FIG. 7.32. Effect of noniso-

thermicity on the heat-trans-
fer coefficient for a stabilized

gas flow in a cylindrical pipe.
The straight line was calcu-

lated taking (7-5-30) into ac-
count: A--[1771; v--[26];
O --[194].

The discrepancy between the experimental ,and calculated data on heat trm_sfer can
be explained by the fact that the experiments were carried out with variable wall tem-

perature and thermal stress over the length of the pipe, leading to infraction of the

Reynolds analogy between the friction and heat transfer.

Using the hypothesis of heat-transfer law conservative to change in the boundary

conditions, a method can be proposed for calculating the thermal boundary layer in a
long cylindrical duet for an arbitrary law of thermal stress distribution over the
length of the pipe. In the range of ¢ from 1 to 5 we can take with a sufficient level of

accuracy

%._,_._. (7-5-31)

where _Cx= T /T t

w 0x

It can be shown that when

_, =. (T..fr,,)",

Reo,/', (¢.)
Re**r= 'f T,,,,\n,

r,
(7-5-32)

where

!

,...,:j:.+.(,

h (+.)= P-T_,( Y '_'_/' y '_
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Taking into account (7-5-32) and (2-6-1), we have

O.S B-4mPr_'Re_ "m [ T.., '_'_J _ "f'nzrrl

2tl-" g'N., (7-5-33)

From the heat balance equation we find

(7-5-34)

where

Taking Eq. (7-5-33) into account we have

¢_s t-., I-,,, .I 0+.,) I
B'4"Pro Rein fl

¢-7":'i- 1= 2_ ,3fl+_,_,_,,..., I 4 ! qwdx /i +ran."[" Rempr.lh.iT. I
(7-5-35)

In the general case the function fl, f2 and f3 depend on the nonisothermicity of the

stream; the nonisothermicity shows up directly in the temperature factor Cx and in-

directly in the deformation of the velocity and temperature profiles. It was shown
earlier that the velocity profile is slightly deformed by_ r_onisothermicity, and in the

first approximation, therefore, we can take w = w 0 = _1/7. Then, assuming like
velocity and temperature distributions, we get

h = 0.40s¢7,'°"_; [_ =_°,074_--°'z_'_; [, = 0,408. (7-5-36)

When m= 0.25 andn 1 = 0.75

/,+n,_ 1 ,o.oo6;

t3

that is, the combination of these parameters is essentially independent of the tempera-
ture factor.

Then, solving (7-5-35) for gx' we get

i

_,.= t -t 2.-__-(' + VI + 4c,). (7-5-37)

where
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am tas (I +nD
-,._ :L...._ r.),,l--.mD,,I--n,._..Jl ___

_2 /3

o! + ReDTPro,_.o,.To,

Nut

_,:,,::;ng (7-5-34) into account, we have

7"w m _' I'l I_-. + -_- (l -_ Vf-g_- O) t+ remPr.,x.,r. ' •
(7-5-38)

_ording to the work of P. N. Romanenko and N. V. Krylova [99], B/2 = 0. 0075

and _ = 0.2 for the stabilized gas flow region in a pipe. Taking n 1 = n 2 = 0.75, we get

,g

Tw = To, I + RemPr,L_.o,To,

Xt+

Dt.0.8_D_I.¢*,.'_ "r_ I + 4 qwd_ . 2,3
• "01 _Xt:Dlr'Ull0i pt.o_ReDi).otToj

0

4 qw dx .'.i

IJI'ul IO-' D i ,_ ,

X t+ _2o n,,_ l÷ r_Tp_:.,

(7-5-39)

Given in Fig. 7.33 is a comparison of the results of a calculation by (7-5-39) with

the experiments of V. L. Lel'chuk and B. V. Dedyakin [26]. The dashed line shows
the calculation of the wall temperature in the initial section by the method outlined

above, taking into account the effect of inlet conditions, according to the work of A. I.
Leont'ev, and V. K. Fedorov [61].

I

I

v-i

FIG. 7.33. Comparison of the results of wall-

temperature calculation with the experiments
of V. L. Lel'chuk and B. V. Dedyakin [26].

The solid curves represent calculation by
(7-5-39); the broken line curves by formulas

for the initial section [61]: 1--experiment No.
?,5; 2--No. 25; 3--No. 12 [26].

Given in Fig. 7.34 is a comparison of the results of wall temperature calculation
by (7-5-39) with the experiments of B. S. Petukhov, V. V. Kirillov, Tsu Tzu-Hsiang

and B. N. Maidanik [87]. The experiments were carried out with a considerable

variation in thermal stress over the length of the duct tin experiment 13-II, for
example, by a factor of 6). As is evident from the graphs, the proposed computational
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FIG. 7.34. Comparison of the results of wall-
temperature calculation with the experiments
of B. S. Petukhov et al. [87]. The curves
were calculated by (7-5-39) : 1-- experiment
13-II; 2--6-VIII; 3--10-V.

method yields satisfactory results and takes correct account of the influence of both
the thermal stress distribution and the thermal factor on the intensity of heat transfer
of the gas in a pipe in the "stabilized" flow region. The method proposed by Ya. M.
Visel [8] is applied to the ease Of the diffusion problem (condensation of vapor from a
vapor-gas mixture).

7.6. Turbulent Boundary Layer of Gas in the Duct of an MHD Generator

In view of the relatively short lengths of seal MHD generator ducts (L/D = 20) and

of the high Reynolds numbers (ReL/L up to 10Gm-t), the boundary layers, which in-

crease at the duct wails, do not intersect, as a rule, and the methods of turbulent
boundary-layer calculation outlined in Chapter 7 for the initial section of a duet can be
applied to these conditions.

A distinctive feature of an MHD boundary layer in the initial section of a duct is
the fact that the unperturbed flow outside the boundary layer is also conductive, and
therefore the flow core and the boundary layers are interconnected both electrically
and gasdynamieally.

In the absence of electric and magnetic fields the static pressure and longitudinal
velocity in the flow core are uniquely related by the Bernoulli equation.

In an MHD generator it is necessary to distinguish between boundary layers at the
electrode and insulator walls. The insulator wall is usually cooled, and only the outer
portion of the boundary layer is eleetrically conductive and is subjected to the effect of
volumetric forces. On the other hand, the temperature of the electrodes is close to

that of the gas. The current induced by the flow core flows through the boundary layer,
increasing at the electrode walls. The Lorenz force acting on the inner strata of the
boundary layer will decelerate the gas and can bring about boundary layer separation
from the wall of the electrode.
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In ducts with appreciable longitudinal currents, e.g. Hall generators, there are
appreciable transverse pressure gradients; as a result, gas flows arise along the
insulator walls from one electrode to the other greatly complicating the flow pattern.

143



It should be kept in mind that the theory developed for a plane flow of conducting

gas in transverse magnetic and electric fields cannot be applied directly to an axisym-
metric flow, since circular symmetry is not preserved in the presence of a magnetic
field.

The presence of additional terms in the energy equation, stemming from Joule

heat generation, also complicates the problem appreciably. Therefore, the results
presented below were obtained with certain assumptions ,and are estimative in nature.

The following hypotheses were adopted:

1. Considered is a plasma flow in the range of low magnetic Reynolds numbers
and Hall parameters. These are the conditions that usually obtain during flow in the

ducts of MHD generators.

2. Fluctuations of the electric and magnetic quantities and also the direct effect

of the magnetic field on the turbulent pulsations are neglected. Some justification for
this approximation, called the gasdynamic approximation, can be found in the papers
of V. P. Panchenko [17]. Obviously, this hypothesis will be justified if the Joule heat-

ing and the ponderomotive force (in the layer at the insulator wall) are small compared
to the heat flux and friction at the wall. At short distances from the electrode and low

wall temperatures this hypothesis is not fulfilled, since then diffusion processes,
Joule heating and other effects become significant.

3. The longitudinal electric field equals zero. The influence of end and near-

electrode effects, which lead to the appearance of a longitudinal magnetic field, is

disregarded.

The integral momentum and energy relations for these conditions are written as

[see (1-2-1), (1-2-13), (2-4-9), (2-4-13)]

a) for the insulator wall

d re" + ReL(i + tO f + _e'" B,I_ {7-6-1)

where

b) for the electrode wall

d Re'°_.
d_ +l_e"_, fz-..= Rez. St,.,

d (Ai.)
+_ d,'. (H--H:j):

d_ Ai x d_

Hj
o

_$@t t

(7-6-2)

drJ___" + Ret (I +H) [ = ReL-_---d.T (7-6-3)
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(7-6-4)

where

I d (hi_) 1_ di*o (H-- HE);

i S

E d

He__ o
_**iZ

Thus, the momentum equation for the turbulent boundary layer at the electrode

wall retains the same form it had for nonconduct,:ng fluid, except that the velocity gra-
dient in the flow core appearing in the shape parameter f must be defined by the for-
mula

d_v. __ dP
p.w. dx d_ +JYBz" (7-6-5)

Consequently, with the gasdynamic approximation we have adopted, the dynamic
turbulent boundary layer at the electrode walls is calculated by the formulas of
Chapter 6.

Important for supersonic MHD generators is the question of the stability of the

turbulent boundary layers at the electrode walls. If the reserve of kinetic energy in
the boundary layer when the flow core is decelerated proves to be inadequate to over-
come the friction, pressure and ponderomotive forces, boundary-layer separation
from the wall occurs and a system of compression shock arises.

The section of boundary layer separation from the electrode wall is determined by
the formulas of Chapter 6 with allowance for the effect of non-isothermicity and com-

pressibility on the frictional drag law and the critical separation parameters.

After linearizing the integral momentum relation (7-2-6) we get

d re'"'-2-qr_ + Hc_it) re",o d_.
d2 u'. d_

: _,w '__ B

= 2(R,"..)" '
(7-6-6)

After integration we get

X

m TI%oo (_'_M)Re':. = exp l + (rn + 1)

xl

],X "U(I--U*) i i exp(])d_+c

(7-6-7)
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For theshapeparameter Hcrit wehavethe expression

Hcrit = 2,4 hp* + 1,38A,--0,52.

The local values of the friction coefficients are determined by the formula

(7-6-8)

c, = V,V_Vt (Re",.)=k-_-j, } '
(7-6-9)

where Wt, $A, and Wj are determined by (7-1-19) and (6-2-14).

The shape parameter f is defined by the relation

_°L d_.
Re._]' (1 -- U') k -- s

(7-6-10)

The parameter fcrit is calculated by (6-4-6), (6-4-7) and (6-4-12) or by the graphs

in Figs, 6.10 and 6.13. In the section where the shape parameter f reaches the value

fcrit' the turbulent boundary layer separates from the wall.

To solve the integral energy relations it is necessary to know the value of the

electromagnetic shape parameters H E and H..3

D. N. Vasil'ev [19] has made an estimate of these parameters, using as a basis a

power-law approximation of the velocity distribution and stagnation temperatures over
the boundary-layer cross section.

Taking

_= 0 = _n (7-6-11)

with allowance for (2-3-8) we have

7:.=[ + (}'--)) _-- ()'-- 1)_l (7-6-12)

Ohm's law is written in the form

/
E-_ B_v -- _, (7-6-13)

and for the flow core it is written as

E,---_Bw, h
a$

Estimates will be made only for the thermal conductivity, when a=o(P, T).

We take

(7-6-14)

•.-_P.) kr.;
(7-6-15)
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In the boundary layer P = const and it can be assumed that

Taking Eqs. (7-6-12), (7-6-13) and (7-6-16) into account, we have

l

H __.(?J-_- |)(2n-_" I) _[ [ --1 ,-k e" {1}+(?-))_._
0

-- (_.*-- I) _'"l" (_ -- k) ] d_;

4

3

2

1

0

4_

J_

2L

0

o_

!

-,="+ +'>
0

+ (,{: -- ,) _ - (.:--l) _-_1}"(_ -- k) ] ca.

*)

. !

2

3

_000 :000 2000 \\\ 3000

-xL \\
b.)

rw , rw

d)

FIG. 7.35. Dependence of the electromagnetic shape

parameters Hj and H E on the non-isothermicity and

load factor k. Calculations were made for Too
=3,000 °KandM 0=2.5. a,c--n=l/7;b,d--n
= 1/10; l--k=0.1; 2--k=0.3; 3--k=0.5;4--k=0.7;

5--k = 0. _.

(7-6-16)

(7-6-17)

(7-6-18)
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From Eqs. (7-6-17)and (7-6-18) it follows that the shapeparameters H and HE]

depend on the three variab]es _, ¢* and k, where k = E0/]_w 0 is the load factor.

The results of numerical calculation of the parameters H and H E by (7-6-17) andJ
(7-6-18) for M 0 = 2.5 (_* = 1.6), Too = 3,000 °K and various values of n and k are

given in Fig. 7.35.

From the graphs it can be seen that the exponent n has a considerable influence on

the shape parameters Hj and H E at wall temperatures below 1,500 OK (¢ < 0.5). H E

and H decrease with increasing temperature and cm_ become negative at certain
1

values of _. Knowing the value of the shape parameters H E and Hj, it is easy to deter-

mine the drop in potential and overflow current at the duct walls

(7-6-19)

where5 **and5 **
el m

walls, respectively.

are the momentum loss thicl_ess at the electrode and insulator
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7.7. Examples of Calculation of a Turbulent Boundary Layer on an Impermeable
Surface

Example 1. Calculate the friction and heat transfer on the surface of a cone in an
air stream with parameters corresponding to an altitude of 10,000 m (P = 198.2 mm

Hg, t = 50 °C) for M = 6. The cone apex angle is 2w = 20 ° . The surface temperature
is 600 °C.

The gas parameters behind the shock are determined from the diagram in the book
of Yu. A. Kibardin, S. A. Kuznetsov and B. Ya. Shumyatskiy [39]. The angle of

shock inclination to the axis of the cone is fish = 14% w0/woo = 0. 975; P0/Poo = 2;

T0/Too = 1.37; M 0 = 4.97. The gas parameters along the surface of the cone are taken

to be constant. Then we get w 0 = 1,750 m/sec; P0 = 0. 084 kg • sec2/m4; T o = 306 °K;

u w = 4.05 • 10 -6 kg • sec/m2; u 0 = 1.93 • 10 -G kg • sec/m 2.

Very important for these conditions is the question of determining the laminar to
turbulent bo, mdary layer transition. The existing theoretical investigations of the loss
of boundary layer stability, based on the method of small perturbations, can yield only

qualitative results.

The limits of laminar-to-turbulent transition on the basis of existing experimental

data are given in Table 7.5.

The results of calculating the complete stability of the boundary layer and a com-
parison of experimental data on laminar-to-turbulent boundary layer transitions on the
surface of a cone with the results of calculation by van Driest [132] are given in Fig.
7.36.
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FIG. 7.36. Influenceof coolingon the
Reynoldstransition number ona cone
with a I0° angle. A, B,C--boundaries
of completestability; 1--M = I. 9, Re0
=2.13 • 107; 2--M =2.7, Re 0=2.64

107; 3--M=3.65, Re 0 =1.97 • 107;
4--thermally insulated surface; o, _.,

D --van Driest's experiments [132].

From this figure it follows that under the conditions considered in the e_ample
cone cooling does not ensure complete stabilization of the laminar boundary layer.

The boundary of complete stability for M 0 = 4.97 corresponds to ¢ = 2.7. In our case

¢* = Tw/T 0 = 2.85; ¢;_ = Tw/T 0 = 5.15;

i + r __..L M_ ----0,39.

According to the data of van Driest and Boison (see Table 7.5) cooling of the cone
surface to values of

A,h
--T

I + r--_- _

--0,38

increases Re x crit by a factor of about 2.

According to the experiments of Laufer et al. [132], Re x crit = 3 • 10 G for a heat-

insulated cone. Then, for a cooled cone under the conditions being examined we find

Re= crit _6- 106 and Xcrit =0,08 m.

The friction and heat transfer in the laminar boundary layer were calculated using
the integral momentum and energy relations.

The frictional drag and heat-transfer laws for a laminar boundary layer can be

represented as [43]

tt 0,22
2 -- _-_ _-'"' (_') -' "" (7-7 -1)

that is,

_Z =,-o.,,_,o)-o.o..
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Table 7.5. Critical valuesof theReynolds

Au_or
Source

C one

angle

deg

M

Laafer, Matte

Lange, Gtseler, Lee

Van Driest

Ross, Sincolair,
Czarneckt

Scherrer

Van Driest, Botson

Oazlay

Sack, Diaconls

J. Aeronaut. Sci., 1953,

vol. 20, g.o 12, p. 718

J. Aeronaut. Sct., 1957,
12

NACA TN 3020, TN 3648

NACA TR 1055, 1951

J. Aeronaut. Scl., 1955,

vol. 22, p. 455

J. Aeronaut. Scl., 1953,
vol. 20, Ns 1

NACA TR 1055, 1951

5 1,79
2,55

4,5

5 1,9--4,2

I0 I ,9

I0 2,7

I0 3,65

I0 1.9--3,65

10 1,4--2,01

20 1.5---2,0

1.5--2,0

2O

20 4.2

3,12

where Re L

150

For the case T = const
W

St _= _l tf I"
2 pl._'/3"

The momentum equation for flow around a cone has the form

d Re" . Re'* c_
d_ PT = ReL --_'

= w0L/Vw0 and of/2 is the local friction coefficient.

Taking into account Eq. (7-6-1) we have

. 0 664

Re'" = V _l _ V'R-_-. ;

_.== 0.574 .
V_l ;

0,574 V_-i
St _ _ pC,----__.

(7-7 -2)

(7-7-3)

(7-7-4)

(7-7 -5)

(7 -7 -6)
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number for supersonic flow around a core

R%cz_t
vx

* _'m, % z+ __t..._'
Comments

(4,3--3,3). IO.
3.1O.

2,7.1O.

(3,4--1)• lo.

(12--5). IO.
(12--4).io.

(8--3,5), IO.

(6--3,5). IO'

(7-8). I_

4,1 1o6
3.106

(2,7--5,4). IO.

4,5.10 l

(a--o, 8s). t o.

1,4--1,65

I ,5--2,3
1,8--3,4

0,6--6
0.6---6
0,6--6

The influence of

flow turbulance not
discussed

0

0 Th'e influence of
the Mach number

not evident

0 Change in Recri t

0,14 due to variation of

P,e L

0--(--0.38)

2o,2- (+0,5)

and

In the laminar-to-turbulent boundary layer transition region we have

0664 .---

_e**crit = _ V _Z F'R-_._it--_ 0,383"2, 85-e•..'0,515-'''_

X6_._=7_

_ = Re*_ri ._---_--,= 700;
Re*_rit w .

R c_

Rercrit = p,2/3 ----993, Rercritw=830;

1, ISY'_-I = 1.15 (1.19)-'
- -- 3,94- I0-'"

cf crit= l/Rexcrit 1/6- I0*

The local frictional drag coefficient is

Cf ==
1,154J-*.'*_" -'. .4 1,105-10-"

_oPe

(7-7-7)

(7-7 -8)

(7-7 - 9)

151



Thelocal heat-transfer coefficient is

¢_ 86,7

--. (7-7-10)-- 2t_ _'la T,c_.= I,

For a turbulent boundary layer it is convenient to define the Reynolds number in

terms of the viscosi_, with respect to wall temperature Re** = (P0w05**)/u w.W

Considering the equality of the momentum loss ttficlmess at the point of transition

from a laminar to a turbulent layer, the integral of the momentum equation for a tur-
bulent boundary layer is written as

!

Re**w =C "+i Re_w -- I__N+I _',_xlw

• !

+Re.Re cr
C

(7-7-11)

Hence, for the local friction drag coefficient we have

{ [I
Ct=" IFgC i+m Re_ -- i_e.l+ I Re_ "m

m

C

(7-7-12)

where

['+" 1C= 2 (2 + i,,) BtI'Qo "

For the heat transfer we get

B
St = V,= 2

Ri

C '+" [ I {D-2+.,(pr..,,),+ m Re.- Re_+m ik..%[
IN

R.J +m D...I +_11_.0, $ )} m+l

_rl ,x_ Yl " " '

C

(7-7-13)

The results of turbulent boundary-layer calculations by formulas (7-6-12) and

(7-6-13) are compiled in Table 7.6.

/190

Given in Fig. 7.37 are the results of calculating the frictional-drag and heat-
transfer coefficients for the conditions being examined.

Example 2. For the conditions of the Viking-10 [35] rocket, calculate the heat
transfer on the surface of the rocket cone of angle 2w = 25 ° at a distance of 0.66 m

/191
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Table 7.6. Table for calculation of example 1

No. of the

formula Formulas and calculation Comments
in the text

0-1-2)

(7-2d2)

(7-2-53)

t I 2 (4" -- _.)-_ _¢• , = _s = _, arcsln V4 (+" -- _.)(¢" -'- _,) + _¢.,

a0 t, r.-- arcsin V4 (,* -- 1) (6. + &¢) + a+= 5,15-- ! X

i 2 (5,;5-- I) -- 2,3X _arcsin_/4(5,15 - '.)(5,'5--2.3)_-2. 3'

--2,3 i=--a_csin it4 (5,!5-- !) (5,15--_,3, .a_2,3 t,., _, , =0,311;

!

n= 7 ' m=0,25; B-----0,0232;

ToQ_= 7= O (0) ( ''-' )'l._M =306 l_ 4,97" -----,'820*K.

f °.- )]tt == W,BC I + m Re=-- 1 o-2+m "_x, (Re**,)t+m _a
'_Czl C

_.rB[21, m m lw.p'_w I"_2--+--'ra) BIUt ]-- _ ) X

! V;_;U

( / w0po _l+m ne**l+m.]_ --_
x --_) k-_-,,j _' It

0,823. I0-'
am=

(x-- 2,_. 10- 'x - n,.=)o.=

St =,, _S "-_ pro:= /-_w X --
%

(Wopo =+"(_:,p. ,_1+., \-d'j '_' ,, t +,.
_ l_w x) 2(2+m) B

.X

]}"(Re**n) '+m Pr':' - .i-_m 0,575. I0-'

X _, == (x- 2,8. to - 'x - ',")',';

0,575.10-'

= m St,CpYoWo =,= (X-- 2,8. IO-'x-n,=')o, n 0,24.0 084.9 81 • 1 770.3 600 ==

The limit frictional drag
and heat-transfer law is
the same for coves and

plates

x 1 = Xcrit =0.08; Re** 1

from calculation of a lam-

inar boundary layer

Re**T1 = Re**T crit

from calculation of a

laminar boundary layer

716

(x-- 2,8. lO-Sx -n,ts)..,.
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Table 7.7. Initial data for example 2

% sea

6O
70-
75
8O
85

H_ m

13 200
19000
22 500
26 500
32 200

x

me.

nl/sec

455
&30
h00
925

!100

mm hg To. "K IPo. kg.sec/m 3

119,8 216,5

48 216,5
27,6 216,5
14 216,5
7,2 216,5

2,62. I0 - "
1,05.10 -z

0,605.10" =
0,307.10- =
0,157. I0-'

Me

1,6-I
2 %

3,12
3,72

t W, "C

24
52
80

Ill,5
138

kcal( m2hr • deg)

,:, _ aO0

t#
12 6OO

10

6

200

2

0 0

!

X

FIG. 7.37. Results of calculating frictional

drag and heat transfer on a 10 ° cone for M 0

= 6.0. l--a; 2--cf.

from the cone apex and behind a turbulence generator at this same station. The initial

data for the calculation are given in Table 7.7.

According to the data of Table 7.5 it follows that the boundary layer at the point of

calculation should remain laminar in the flight time under study. A turbulence genera-

tor mounted just ahead of the calculation cross section (x -- x 1 = 0.64) should make the

laminar boundary layer turbulent.

We shall assume that the boundary layer downstream of the turbulence generator

has become completely turbulent and that the values of Re** just before and just behind

the turbulence generator are the same. The calculation is performed by the method

outlined above. The calculation results are given in Table 7.8 and in Fig. 7.38.

kcal(m 2hr • deg)

2°°r 

I20

60 .t$ P2 25 &/ &fsec

FIG. 7.38. Comparison of the results of calculating

example 2 with the experimental data of Snodgrass

[222]: l--laminar boundary layer; 2--turbulent

boundary layer; •--experimental values of _ behind

a turbulence generator; .,--value of _ for a laminar

boundary layer.
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Table 7.8. Table for calculation of example 2

Formulas and Calculations

!
i

[ _ 7c

'_, Sec

{
7s { e.o

Laminar Boundary Layer

o,s,,Y_s
St I-

_/ R-_mpr312

s = St Cpo 1_.3 600, kcal/( m 2 hr. deg) 34,.o

Re_Fi ---=Re_i/pr3/2 = 0,3_.__ __0,1l_b___0,04 _ ' 190
pr312

Turbulent Boundary Layer

1 [....,. 2 (4,.--I) + a_,

•--arcsin i
_/4 (q_*--l) (_,* _- a¢) -,-*_, J

r_.

,'n

=,iT,,,R,T,_I+,,,prO,7%"i t+_" c ;J += =o,o=
: St Cpol,_.3 6oQ, kcal/(m 2 hr- deg)

0.00.3_b8

O,e,34

0,00_4

0,0O0372

27,3

_5

0,T

O.O091g

{
{
I

0.000416

23,7

727

0,000,._3S

2| ,2

560

0,7_t ! 0,694

{

I

I
I

i_ I 81,5

0.03065

16,6

.4_2

0,00_

49,3

Example 3. Calculate the distribution of specific heat load over the length of the

nozzle of a liquid-fuel rocket engine. The initialdata for the calculation are as fol-

lows :

pressure in the precombustion chamber: P = 6, 8, 14 kp/em2;
characteristic veloeity: 1617, 1653 m/see;

nozzle wall temperature: 478 °K

recovery factor: r = 0.9;
propellant: hydrazine (N2H 4) and nitrogen tetroxide N2Q 4 in the ratio 1:1;
adiabatic index: k = 1.22;

gas constant of the combustion products: R = 44.49.

The geometrical dimensions of the nozzle are shown in Figs. 7.39 and 7.40.

The combustion products of hvdrazine in nitrogen tetroxide consist of a mixture of /193

nitrogen, hydrogen and water vapor. The weight concentrations of these gases (for

mox/mfuel = 1) an CN2 = 0.59, CH2 = 0.019, and CH20 = 0. 391. The rest of the initial

data are given in Table 7.9.

The stagnation temperature of the gas is related to the characteristic velocity as

T_=. gR

where /195

k-K-) '

fl is the mass flow coefficient, k = 1.22 and R = 44.49 kg • m/deg.

(7-7-14)
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kcal/(m hr)

11"¢.ta6 o
10

3 _

8

7

6
5

4

Plane of
E

extraction

Injector __

kc a]

$

m 2 hr)

Plane of Injector __exit section plane

h i Distance along nozzle axis x, mm& sba
Distance along nozzle axis x, mm FIG. 7.40.

FIG. 7.39.

FIG. 7.39. Comparison of the results of calculating heat transfer on a
nozzle with the experiments of [247]. P00 = 6.82 kp/cm 2. The curve was

calculated by (7-6-16) and (7-6-17); o, a --measurements of qw from the

temperature drop in the wall; broken line--results of measuring qw by the
calorimetric method.

FIG. 7.40. Comparison of the results of calculating heat transfer in a
nozzle with the experiments of [247]. P0o = 14.06 kp/cm 2. The curve was

calculated by (7-6-16) and (7-6-17); o, n --measurements of qw from the

temperature drop in the wall; broken line--measurements of qw by the
calorimetric method.

Table 7.9. Initial data for example 3

F,'C 1000 1200 1400 1600

Cp, kcal/(kg, deg)

I_" I0-*, kg" sec/m 2

0,4T3 0,49

4,25

O,505

4.6

0,517

| _00

0.527

5,3

2O0O

0,5a6

5,56
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Then, T00= 2,820.7 °K for c* = 1,617 m/sec and Too =2,940 °Kfor c* =1,653

m/see.

The computational formula for the heat transfer coefficient has the form

,.=.-_-c_ 36oo,¢,_,,Pr-°.,,,_... f--£-_ ."
_R crit I

X aO +,,,)_it=' ¥= (R__'-'d_
2 Pr°.'Sg_o o \_rcrit ]

o

(7-7-15)

Takingm = 0.25, B=0.0252 and Pr o. 75=0.846we have

0,2S

= = CPO'foWo_'6_Q° (R--'_"_J

[ ]o T$-- ,
X 0,0186 "fcrWcr_ _ _d_

0

(7-7-16)

The mag-nitude of the specific heat fluxes is determined by the formula

qw =a(rw--r'w)- (7-7-17)

The calculation results are _ven in Table 7.10 and are shown in Figs. 7.39 and
7.40. Given in the same graphs are the results of the experiments of Whitte and
Harper [247], which were obtained with an engine under the same conditions for which

Table 7.10. Table for calculation of example 3

x_m

0,213

O, 2_'2(.}

0,241

O, 254

O,266

O, 279

O, 292

O, 305

0,317

0,3,_0

0,356

0,361

0,406

0,432

0,457

O, 4(;5

Rc**T(I) ReOOT (2)

9 850 !7 500
10900 19350

12 65O I 2'2aSO

14700 2,6100

16 400 29 100

17300 b0700

17000 ]30200

16 1oo } 2_ {;fro

14 S20 25300
15400 23_50

11_00 20 900

10 130, 17950

8950 115500
080 I 14 400

7320 ]13000

7 040 12 550

VT Rcr Rcr]-_,78 ](-E'/ =to)

2 342

2 340

2 330

2 320

2310

2 390

2 "90

2 2_0

2270

2 270

2 260

2 250

2 240

2 230

2 230

2225

AT(2) kcal kcal [ kcal ! kcal Re**(t)
kg: d_--glkg,de------;Im--_:hr 'Z'_:---_._

2 0,782 0,83]

! ,96 0,809 0,858

1,94 0,877 9,903

1,92 0,938 0,955

! ,90 0,987 0,9'.)1

1,88 '.,00 l ,OC

1,82 0,987 0,99

1,80 0,937 0,952

1,75 0,_85 0,910

l,b8 0,_33 ! 0,_72

1,64 0,749 0,803

1,54 0,677 0,746

1.50 0,618 0,695

1,46 0,569 0,654

1,42 0,527 0,617

1,40 0,514 0,607

2 462

2 460

2 450

2 430

2 420

24i0

2 405

2400

2 395

2 390

2 3t_O

2 370

2 360

2 350

2 350

2 340

0,556 3,52

0,554 3,64

0,552 } 3,96

0,550 4,21

0,550 4,56

O, 54,_ 4,56

O, 545 4,2(_

0,542 3,81

0,537 i 3555

0,'_2 2,_7

0,527 2,33

O,520 ,82

0,512 ,49

0,510 ,235

0,505 ,06

0,503 O, 995

252

27!

3!7

35-5

aOI

-..14

401

362

3:_2

286

232

189

158

133

115

159

50_

548

642

738

8.C

835

810

732

649

579

466

374

319

269

232

221

0,554

0,552

O, 550

0.549

0,548

0,54_

0,542

0,540

0,535

0,530 !

0,525

0,517

0,510

0,507

0,502

0,500

6,33

6,60

7,36

_,02

_,44

8,41

7,91

7,06

G,15

5,39

4,28

3,30

2,73

2,31

1,97

1. ,",5

a 700

9 780

11 300

13 150

14 650

15 350

15 500

14tRD

13 150

12 000

104O0

9 500

"7500

7 l_t)

6 440

6 320
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the calculation was made. The heat flux was measured by two methods, balance and

non-stationary. As can be seen from the graphs, the proposed calculation method is

in satisfactory agreement with the experiments.

Example 4. Calculate the changes in momentum loss thickness and shape param-
eter H for a supersonic turbulent boundary layer in the diffusor region. The initial
data for the calculation are as follows:

Too = 338 °K; diffusor wall thermally insulated;

P00 = 1 kp/cm2;

5"* 0 = 0.406 mm fat _ = 0).

The variation of the Mach number over the diffuser length is given in the follow-

ing table:

M

0

3,01

0,2

2.75

0,4

2,49

0.6

2.17

0,8

!,93

1,0

1,79

The geometrical dimensions of the diffusor are shown in Fig. 7.41. /198

aS
mm

_4
L

I

n2t
"re gz _4 o,_ tl8

FIG. 7.41

• a x

7 -o2o o.a,D

I_ FIG. 7.42

FIG. 7.41. Variation of 6"* over the length of a supersonic diffusor.

The curve is theoretical; the points represent the experiments of [178].

FIG. 7.42. Change of the shape parameter H over diffusor length:
calculated by the proposed method; 2--calculated in [198]; the points

represent the experiments of [178].

The results of calculating a turbulent boundary layer by the proposed method for

the conditions under study are presented in Table 7.11 and in Figs. 7.41 and 7.42.
Shown in these same graphs are the experimental results of McLafferty and Barber

[178]. As can be seen from the graphs, the proposed computational method is in
satisfactory agreement with the experiments.
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Table 7.11. Computational results for example 4 /197

I

0 3,01 I 668 , 2.64
I

0,2 2.761 644 , 2,37

0,4 2,49[ 616

0,6 2,17[ 577
I

0,8 i,93 [ 542
I

l,O I 1.79 518

--0,4 [3.01 668

2,12

1,85

i ,67

1 ,ST

2,64

Hcr

5,82 0,5 1 1

5,19 0,54 1,34 0,69

4,59 0,58 1.78 0,485

3,94 0 63 2,32 0,349

3,50 0,68 2,98 0,255

I A_.10'
R*'" _'m

0

0,616

1 ,21

1,83

2,46

1050 0,406

1 460 0,455

2 020 0,490

2 690 0,496

3 5_0 0,546

"d'_"' --I.1@--fcr '1(_ _r
sec-1

3,05

4 670 l O, 63

1 310

0750 'o
I 5O0

1 50O

0

I

0,8 1,02 ]0,785

1,13 [ 1,31 0,86

1,66 1,68 0,985

1,8 2,4 10,751,65 2,88 0,574

1,97 3,28 0,6

0

0

g

0,975

0,98

0,999

0,9t3

0,94

[0,941

0,89

Remarks:

I
B,=

exp f {! dr._ "+ "_r)-g",
J

I dWoCmeXp(I + m) 11 + Hcrl _.uh

5,66

5,08

4,59

3,78,

3,29

3,07

-_,2
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CHAPTER 8
TURBULENT BOUNDARY LAYER OF GAS ON A PERMEABLE SURFACE

S.I. Comparison of the Limiting Relative Laws of Friction, Heat-and Mass Transfer

on a Permeable Plate with Experiment

It is well I.mown that when gas is injected at the surface of a body the stability of the
laminar botmdarv laver decreases. It can be assumed that in a turbulent boundary
laver the contribution of viscous friction forces to the total drag decreases with in-

creasing intensity of injection. This fact reduces the influence of the Reynolds number
on the relative laws of friction :rod heat transfer and should favor the applicability of

the limiting laws of friction and heat transfer for practical calculations in the range of
finite Reynolds numbers. In order to compare the experimental data with the limit

formulas let us obtain the relative frictional-drag and heat-transfer coefficients for
the condition Re = idem.

X

The integral momentun_ relation for a phme turbulent boundary layer of incom-
pressible fluid on a permeable plate can be written in the form of (1-2-11):

d Re**

dR,.-- Or+b) _"---_-,
(8-1-1)

where, as usual, Re**=w_**/v; Re.=a'0xlv.

Let us examine two ea_nonical cases: b = const and Jw = const. We shall assume

that the turbulent boundary layer develops off the leading edge of the plate, i.e. for

x=0, 5 =0. Then, takingcf0 B(Re**) -m, for the caseb=constwehave

t

l_e'" = [ 2B-_-(l _t_ m)C_ _1- b) Rex], +_,. (8-1-2)

We define the friction coefficient for standard conditions by the formula

eft,. B,

2 Re_' ' _8-1-3)

where

m, = i--_ ; B, = (_)-a'-(1 +m)-" .

When m = 0.25 andB/2 = 0. 0128, we have Cf0x/2 = 0. 0296 Re-°'x 2

We introduce the relative friction coefficient and the permeability parameter in
the form

i': = )
2

(8-I-4)

/198

/199
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The quantity Wx is the ratio of the friction coefficient on a permeable plate to the

friction coefficient on an impermeable plate for equal values of Re .
x

From Eqs. (8-1-2) and (8-1-4) it follows that /200

b
c,.= cl, _ + b)m', b, --

(_ + b)" '

(W + b) "it' _crit_Ucrit "

(8 i-5)

Let us recall that W--_ (-_--)Re"'O b=gw c,--;-"2 When b = bcrit' we have _F_-_ _- 0.

From Eqs. (8-1-5)

W_=(I-- b_'b.
_-] T'X

(8-1-6)

consequently, u,'_,......._-b,, when b--+--4; that is, in this ease

]w='' el2 (8-1-7)

and

•w = P (- ww) _0. (8-1-8)

Thus, there exists a limit solution for suction of a turbulent layer, as is known

[100], an analogous result is also obtained for a laminar boundary laver (the case of an
asymptotic solution). As follows from (8-1-1), in this case Re** = const and 5**
= const.

When m=0.25

I_' = (I --0.25b)' .
za* (1 + 0,'25b)*, 4 '

b
b=-'_- (1+0,25b),., ;

bzcrit "_-3,0

and the flow being examined exists in the region

--4<b<+4 and --oo<bx< +3,0.

For the conditions Jw = const and the boundary conditions 5**

m = 0.25, we get from the momentum relation

= 0 at x = 0 for

(8-1-9)

161



B Re** U 4 Re**Re" _ . d

'°'=
3 Lp(I +_Re"'_l_) {_' Re'* --2?2 (Pe"_ :/'

,-_-613'(Re*") ''2 + 12_ (Re*')' _'-- 12 It

+ _ (Re**)'/' ] In[l + _(Re'*)t ' 1}.

(8-1-10)

/2o.____1

where

--" ]w/2B.

Expanding the logarithms from this formula into a series and limiting ourselves to
the first five terms, we get

[¢, (8-1-11)

Consequently,

(I -- 0.25b)' t

IF "- (1+0.25b)*.* ;

b
b== (1 +0.2,%)*.' ; I

b, crit --- 3,5. J

(8-1-12)

The asymptotic solution for these boundary conditions also yield

"rw _ _p_PcrGP0.

In the region of existence of a flow with Jw = const

--4<b<4 and --oo<bx< +3,5.

Jw

When cf0 eonst {e.g., flow over a rough surface) the conditions b = const and

= const become identical and the functions • and # coincide.
x

Given in Fig. 8.1 is a comparison of the results of calculating the frictional drag
laws by formulas (8-1-9) and (8-1-12). As can be seen from the graph, the difference
between the formulas is not great.

The triple Reynolds analogy should be satisfied fro these conditions; that is,

W..---- Ws_*= Wo_.. (8-1-13)

where, as will be shown below, the conditions T w
the conditions b T = const and b D = const.

= const and c
w

= const correspond to
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_a

r

t_x_

\

rrp

'2 i

FIG. 8.1. Comparison of the relative friction

coefficients on a permeable plate for the case

b = const (1) and Jw = const i2). 1--calculated

by (8-1-9); 2--calculated by {8-1-12).

3

2

U

U

3

1 2 J_

CvOx

FIG. 8.2. Influence of gas injection on
the turbulent friction coefficient on a

permeable plate: 1--gas suction, cal-
culated by (8-1-12) for b < 0; 2--gas
injection, calculated by (8-1-12) for
b > 0; O--[148]; A--[191]; 0--[90]; e-

llS11; _--[491; _, (D--[156].

Q)

q

8

s-Q

FIG. 8.3. Influence of gas injection on the coefficient

of heat transfer on a permeable plate. 1--calcu-

lated by (8-1-12); 2--calculated the empirical for-

mula of [83];O--[180]; {)--[141];(}--[90]; Q--[125];
_--[238]; e--[96]; _--[145].
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The existing experimentaldata from measurementof friction ona permeableplate
are comparedin Fig. 8.'2with the limit formulas (8-1-12). Theagreementbetween /202
the limit frictional drag law _q_ndthe experimental data obtained for finite Reynolds
numbers can be considered as completely satisfactory, although the great scatter of

the experimental points, especially at high injection intensities, should be noted.
From our vie_3_oint, the most reliable data of Kendall [135], Dershin [135] and Mickley /203

_as processed by Leadon) [169] are located somewhat above the limit relation.

The limit law of heat transfer is compared in Fig. 8.3 with experimental data on a
permeable plate for the subsonic velocity range with injection of a homogeneous gas.
As can be seen from the graph, the experimental data on heat transfer exhibit substan-

tially greater dispersion than those on friction, especially in the region of intense in-
jection. From our viewpoint, the most reliable results, obtained by Kays et al. [182],
are located somewhat above the limit relation, which may be explained by the influence

of the finite Reynolds number.

8.2. Critical Injection Parameters

Three regions can be defined for gas injection through a permeable surface,

depending on the intensity of injection, as follows:

1. The friction coefficient cff2 in the momentum equation is commensurate with

the relative injection Jw" In this case the basic assumptions of boundary layer theory

remain in force, but a simple self-similar solution cannot be obtained because the

equation contains the friction coefficient.

2. Relative injection is considerably greater than the friction coefficient (Jw

>/ c#2 , but the momentum of the injected gas mass is much lower than that of the

main gas flow. In this case the fundamental assumptions of boundary-layer theory

remain in force, and a simple relationship between 5"* and Jw is obtained from the
momentum equation:

8"* ==_wX. (8-2-1)

3. The momentum fluxes of the injected gas and main flow are commensurate. In
this case the assumptions of boundary-layer theory are unsuitable.

An approximate estimate can be made of the region of variation of the transverse
mass flow, where the basic assumptions of boundary-layer theory remain valid.

Reducing the Navier-Stokes equations to dimensionless form and considering that

t$ W
tl/t¥ _ _---z---- :.:= _,

H,'0

during gas injection, we get

(8-2-2)

(8-2-3)
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Thus, the principal consumption of boundary-layer theory Cthat is, OP/Og=O)

/w ~ 5/L. Since 6/L = 0.37/Rex°'2, the domainremain valid if f--.6', that is, Wy w o

f applicability of the methods f boundary-layer theory, according to the estimates, is

bounded by the maximum value of the permeability parameter b = 12.
x

One of the interesting results of the asymptotic turbulent boundary-layer theory

under development is that the boundary layer separates from the wall at certain injec-
tion intensities, defined by the critical injection parameter. In particular, the critical

injection parameter is bcrit = 4 for injection of a homogeneous gas into a subsonic

stream under quasi-isothermal conditions. In this cross section the friction coefficient

equals zero, the wall temperature equals the temperature of the injected gas and the
concentration of injected gas at the wall is 100%.

Taking these ideas into account, a qualitative picture of turbulent boundary layer
development over a permeable plate at a constant mass flow rate of injected gas can be

given in the form of the diagram illustrated in Fig. 8.4.

Jw - Jw
l

",,=__;('_n)w, -

FIG. 8.4. Diagram of boundary-
layer development along a per-

meable plate.

Up to the section x = Xcrit we are dealing with the first region. At the section

x = Xcrit the boundary layer is displaced from the wall. In accordance with the limit

formulas {8-1-12)

Re_crit_[lO]w] -_. !8-2-4)

In the region x > Xcrit the boundary layer is separated from the wall; here Eq.

(8-2-1) becomes valid. \\ hen x > Xtr.ms, tile boundary-layer equations are inexact,

and to get a rigorous result it is necessary to solve the complete system of Navier-

Stokes (or Reynolds) equations. The value of Xtran s can be obtained from the esti-
mates made above:

0 * 5Re._tran s - [_,81 w ]- _s-2-5)

Given in Table 8.1 are basic data on experimental studies in which the critical

injection parameters were measured.

As can be seen from Table 8. i, the experimental values of the critical injection

parameters, determined by various methods, are sufficiently close to the theoretical

limit values. Considering the complexity ofdetermining the critical injection param-

eter and the law experimental accuracy, the agreement between theory and experiment
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Table 8.1. Composite table of the papers in which critical injection parameters
were measured

Author

Hacker (U.S.), 1956

Hacker (U. S. ), 1958

A.I. Leo_tlev, B.P. Mi-

ronov, P.P. Lugovskoy,
1966

Baker (England), 1967

Rosenbaum and Margolis

(U. S. ), 1967

S.A. Druzhinin, et al.,

(1968)

V,:P. Motulevich, et al.,

Measurement method

From the indications of

a Preston tube

From an interferogram

velocity profiles

Interaction for acid

medium with an alkali

one

From the indications of

a Preston tube and

velocity profiles

From measurements

of pressure fluctuations

at this wall

From measurements of

turbulent fluctuations

and boundary layer

displacement thickness

From interferograms

in monochromatic

light

befit

3.5-4.0

8.0-15

5.0-5.4

3.5-4.0

4.0

Experimental Conditions

Flat plate

Flat plate

Two-dimensional duct

Axisymmetric wall jet;

rough, permeable

plate

Flat plate

5.0-6.0 Flat plate. Injection

of various gases

(air, Freon, helium)

Plate in a two-dimen-

sional duct

Source

Jet Propulsion, 1956,

26, No. 9

An ASNIE publication;

Paper No. 58-A-249

Inzh-fiz Zh., 1966,

X, No. 4

Thesis, Univ. of London,

Jan. 1967

Phys. Fluids, 1967, 10,

No. 6

Teplo- i massoperenos,

'_nergiya" Press,

1968

ENIN (Power Institute)

1969 80 .

must be considered as better than satisfactory. It is interesting to note that the
velocity measurements made in [49] in the boundary-layer displacement region have
demonstrated convincingly that the longitudinal velocity component near the wall equals

zero, in agreement with the adopted scheme.

An interferogram of the turbulent boundary layer on a permeable plate from the
paper of V. P. Motulevich [80] was given in Fig. 1.5. A comparison of that interfero-

gram with Fig. 8.4 alz J supports the scheme adopted for turbulent boundary-layer

development in the egion of intense injection.

From an analysis of Table 8.1 it follows that the experimental values of the criti-

cal injection parameters obtained by direct optical methods [149, 63] are greater than

the theoretical limit values obtained for infinitely large Reynolds numbers.

Interesting results from measurements of wall pressure fluctuations for a displaced
boundary layer on a permeable surface are given in the paper of Rosenbaum and

Margolis [201].

Shox_ in Fig. 8.5 are the results of measurement of the rm wall pressure fluctua-

tions at various injection intensities. As can be seen from the graph, the wall pressure

fluctuations increase with increasing injection and at certain injection rates a maximum
is observed, explained by the authors as blow-off of the boundary layer from the wall.

The broken line in Fig. 8.5 corresponds to a calculation for bcrit = 4; it passes

/208
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#

I,t " 1/

f,2

FIG. 8.5. Dependence of the rms pressure fluctua-
tions on a plate on the injection intensity according
to the data of [201]. The dashed-line curve was cal-
culated from the boundary-layer displacement con-
dition (b = 4.0); the points represent the experiment
of [201].

symbol I A _, _ 0 0 0
Velocity WO,mlsec I_-75-_]-,1--=--'1 --'_'_-,6I_ T 61

approximately through the pressure-fluctuation maxima; this is an additional quantita-
tive confirmation of the theory being proposed.

Using the method applied in Chapter 9, let us taken into account the influence of a
finite Reynolds number on the critical permeability parameters.

In the immediate vicinity of the wall the horizontal velocity component w x
and the equation of motion for the viscous sublayer can be written as

0,

d=_,,= dG' x

-_- = ], _y (s-2-6)

In integrating we find that

in the region 0<I<_, on a permeable plate.

When Jw = 0, we get the usual linear velocity distribution. At the point of boundary-

layer break-away, _=0 and Jw = bcrit _Cfo/2' the quantity bcrit having a finite value.

Consequently, ,_:=0 at the point of boundary-layer separation near the wall. This means

that a layer in which the longitudinal velocity component w x _ 0 replaces the viscous

sub!ayer at the point of ___,rbu!ent bo,_m_d_ry-laver separation near the permeable surface.
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Taking t(_)_---0,4}W'_, for the turbulent part of the boundary layer and taking into

account (1-3-6) and _5-1-2) we get

d_ I _6 / Ct )0.4_ _- -- V _ _ ._, -t-.;w"' = 0.
(8-2-8)

Setting cf
= 0 and oJ,=0 at the point of boundary-layer separation, we get

=2.51 }wcritln ; •-- ;,crit

T =

(8-2-9)

When ¢= l we have ._= i and

,I V_crit = exp: 0.4 bcrit_ 2
bcritCt. J"

(8-2-10)

/209

Accordingly,

--_ V _'crit 2./ 2.s
g T"

Since % = 0 at the point of separation,

On the other hand

bcritoa

bcrit

In the first approximation the quantity Z can be defined as

z- i-

(8-2-11)

(8-2-12)

(8-2-13)

(8-2-14)

The results of calculating bcrit by _8-2-13), with account taken of (5-2-5) and

(8-2-14), are presented in Table 8.2.

The calculation results are sufficiently well approximated by the formula

0,83
bcrit _ bcrit=[ | + (Re")'." ]"

(8-2-15)

/210
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Table 8.2. Valuesof thecritical permeability
parameter in the rangeof finite Reynolds
numbers

Re** i _10' .

bcrit 5,18 ] .

i

b'crit for b = const l 3/74 i"

104 10_ co

4.92 4,48 4,0

3,57 3,35 3.0

The results of calculating berit by (8-2-13) for a boundary layer of variable density,

defined by (5-5-13), at subsonic velocities are compiled in Table 8.3.

Table 8.3. Values of bcrit for a plate

submerged in a supersonic, non-

isothermal gas stream

l_eQ'I

2.10n ID 1_ Qo

0,25
0,5
!
2
4

II ,6
7,96
5,18
3,23
1,92

II

7,54
4,92

3,06
1,83

I0
6,87
4,48
2,79
1,67

9,25
6.21
4,00
2,47
1,46

As follows from the graph in Fig. 8.6, the critical injection parameter in the

range of finite Reynolds numbers for injection of foreig-n gases under non-isothermal
conditions can be determined by (8-2-15), while the effect of variable density is taken

into account in bcritco by formulas (5-3-5) and (5-3-6). In this case

for _, <i and

bcrit__ I 1 (arccosf-- _,'_'
•bcrit_----_ 4 _,--l \ _, /'

(8-2-17)

for ¢1 > 1, where Ct = Po/Pw; befit is defined by ;8-2-15).

With allowance for the approximating formulas we find

barit _ 3

_crlt, | + 2-_,' /8-2-18)

In particular, for injection of a foreign gas under non-isothermal conditions we get
_,=R and

/211
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Formula (8-2-19)

bcrit _ 3
bcrit ! + 2_ "

is compared in Fig. 8.7 with the experiments of [75].

........!!!1
ai : -' _:,_ ....... ,,, ,

_.I.I...L_ ! "_ i I i I!

4! i i f r"_-_'_ . IIIII

' t IIil"'.,.'_._ 1

8 i:::: : i / I T_'• ::::

i llli i I l LII]I [ Ill

I0-r 2 J _ G810 ° 2 3_ G 81_'

'7 i

Fig. 8.7

Fig. 8.6

FIG. 8.6. Influence of non-isothermicity and Re** on the

critical injection parameter. 1--Re**= 2 • 104; 2--105;
3--10_; 4--_.

FIG. 8.7. Effect of the molecular weight of the injected gas
on the critical injection parameter. Curve calculated by

¢8-2-19); the points represent the experiments of [75].

(8-2-19)

8.3. Taking into Account the Influence of a Finite Reynolds Number on the Laws of
Frictional Drag and Heat Transfer on a Permeable Surface

In Chapter 7 it was demonstrated that a formula of the form

VF_._(I --_)', (8-3-1)

where

is universal.

Considering the relatively weak effect of a finite Reynolds number on the relative
law of frictional drag, we retain formula (8-3-1) also for the region of finite Reynolds

numbers and will take into account the effect of the numbers only on bcrit (by (8-2-15)).

Final conclusions as to the valdity of this supposition can be drawn after compar-

ing the proposed formula with experiment. It is well known that gas injection reduces
the critical values of the Reynolds number. If we take a minimum value of Re**

crit
= 10 :_, we find thatbcrit _5.3. Then,

_= (1--,0,189b)2; ,,8-3-2)
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FIG. 8.8. Effect of injection and non-isothermicity on heat transfer in

the initial section of a pipe. Coordinates St - f_). 1--calculation
Stw_ t

by (8-3-1), (8-2-16) and (8-2-17). The experimental data are from [68]:

inlet variant I: o--air-air; ¢1 = 0.47-0.8. Inlet variant Ih ,_--air-air, ¢1

= 0.47-0.8; A--air-air, _b1 = 0.3-0.42; +--helium-air. The region
bounded by dashed lines is the experiments of [182] (air-air). Coordi-

St = fib). 2, 3, 4--calculation by (8-3-1) and (8-2-16) for ¢1 = 0.8,
nate S_0

0.6, 0.3, respectively. Experimental da'ta from [68] : x--el = 0.7-0.8,

¢1 = 0.56-0.6; ii--¢ 1 = 0.3; the points in the ovals are experiments with
b=0.

FIG. 8.9. Effect of injection of a foreign gas in the frictional drag
coefficient, a--experiments of Pappas and Okuno [191]: O--helium-air;

{)--freon 12-air; o--air-air (M 0 = 0.3; m = 0.153); b--experiments of
P. N. Romanenko and V. N. Kharchenko [90]: o--helium-air; O--air-
air; _-freon 12-air; the curves were calculated by (8-3-1) and (8-2-15).

bcritx = 4,5, _x=-= (I --0.19b)-" .
( 1+0. '25b)°,_ (8-3-3)

Given in Fig. 8.8 is a comparison of (8-3-1) with the experiments of [68], in which
ata were obtained in heat transfer in the initial section of a porous pipe under rela-

ively strong non-isothermal conditions (up to _b1 = 0.3). The effect of non-isothermic-

ty on St was determined by (8-2-16), and the function _I,t appearing in _l was calcu-
ated by (4-1-5). The number St 0 was defined by
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where Re** 5.**/u
iw = Po\V° 1 w

St,_ 0.0128
(Re*',w)m Fr*d_'

As can be seen from the graph, the proposed caleulation method yields satisfac-
tory results even for an appreciably non-isothermal turbulent boundary layer on a

permeable surface. It is interesting to note that the influence of non-isothermicity on
the relative laws of frictional drag and heat transfer on a permeable surface is con-

siderably greater than on an impermeable surface.

The experimental data of P. N. Rom,q_nenko and V. N. Kharchenko [90], Pappas
and Okuno [191] from measurements of friction during the injection of foreign gases

are compared with (8-3-1) in Fig. 8.9. .an analogous comparison is made in Fig.
8.10 with the data on heat transfer obtained in a paper of Tewfik, Ekker and Shatladen
[237].

Given in Fig. 8.11 is a comparison of the results of a measurement by Jonsson

and Scott of the helium concentration on a permeable surface with formula (5-5-7).

/214

#2

0
02

b,,- "f;-
St_

FIG. 8.10.

Zo

FIG. 8.11.

FIG. 8.10. Influence of injection of helium on the
heat-transfer law. Curve calculated by (8-3-1) and

(8-2-16) for Re** = 104; the points represent the

experiments of [237].

FIG. 8. Ii. Relationship between the relative friction

coefficient and the concentration of injected gas
(helium) at a wall. Curve calculated by (5-5-7); the

points represent the experiment of Jonsson and Scott
[1581.

Pore cooling is widely used in the supersonic gas flow region. The limit laws of

frictional drag and heat transfer for this region, as shown in Chapter 6, can be

approximated by

where

(8-3-4)
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Thevalues of the critical permeability parameter are approximatedby

bcrit = bcri_'.,,t, (8-3-5)

where bcrit is defined by (5-3-5) and (5-3-6).

It should be noted that the frictional drag coefficient Cfo/2 occurring in the per-

meability parameters is also defined by Re **. For the condition of flow over a flat
w

plate being considered here Eq. (8-3-4) is applicable for the laws of both heat and
mass transfer.

In calculations of heat-transfer processes in a supersonic flow on a permeable
plate there arises the question of the effect of injection on the recovery factor. Fig.

8.12 gives the not too numerous experimental data in this region, processed in the

2 , where CfM/2 is the frictional drag
form of the dependence of r/r 0 on b M = Jw CfM

coefficient in the absence of injection, but with allowance for the effect of compressi-
bility. A substantial decrease of the recovery factor with increasing injection inten-

sity can be noted. This factor may be of great significance in generalizing the experi-
mental data on heat transfer in a supersonic stream in _he re,on of relatively small

temperature drops. The heat-transfer coefficient, defined as c_00 = qw/(T00-Tw) , may

differ by several factors from the heat-transfer coefficient _ qw / *= {Tw-Tw). In

analogy with a subsonic flow, the second definition of the heat-transfer coefficient is
-'-" T*

more convenient, since it satisfies the condition for T w w' qw -- 0.

The experimental data on heat tr_nsfer of B. P. Mironov, M. I. Smirnov and

N. I. Yarygin [76] are compared with (8-3-4) in Fig. 8.13. The experiments were

carried out for a longitudinal flow over a porous cylinder with M 0 = 3.0 in a rather
broad range of variation of the injection parameter. First data were obtained in the

recovery factor (see Fig. 8.12), which were used in determining the heat-transfer
coefficients. * Good agreement can be noted bet_veen the experimental results and
(8-3-4).

In calculating a turbulent boundary layer of compressible gas on a permeable sur-

face allowance should be made for the appearance of an oblique shock at the leading
edge of the plate in view of the increase in displacement thickness and flow deflection.

/215

/216

/217

* Shown in this graph are the experimental data of Leadon and Scott.
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FIG. 8.12. Influence of gas injection

on the recovery factor, e--experi-
ments of Yu. V. Baryshev [7] (M
= 2.5); A--experiments of B. P.

Mironov, N. I. Yarygin [76] (M

= 2.06, 3.05, 4); x--Pappas andOkuno
[192] (M = 4.7); o--Bartle and Leadon
[169] (M = 3.2); A--Leadon and Scott
[168] {M = 3.0); o--Rubesin [206] (M

= 2.7). calculation by the

formula [7]

_ ,+b, '('+_,)It O+b')_V'-']_T__-----_r-

0

o.s !

FIG. 8.13. Effect of injection and

compressibility on heat transfer for

longitudinal flow over a cylinder.
Curve calculated by (8-3-4). The

points represent the experiments of
B. P. Mironov, M. I. Smirnov and

N. I. Yarygin [76].

Mach number _ _ 4,0

Shown in Fig. 8.14 is a shadow pb.otograph obtained by Yu. V. Baryshev of a
boundary layer on a plate with an initiM porous section in a supersonic flow. The
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FIG. 8.14. Turbulentboundarylayer of compressi-
ble gason a permeablesurface (shadowphotograph).
M0= 2.25; jw/P01 w0x = 0.032; p0tw0i - mass gas flow

behind the shock; the white line shows the position
of the shock calculated by t8-3-7).

shock intensity and therefore the parameters at the outer edge of the boundary layer

can be determined using the formulas of gas dynamics for flow past a wedge.

The angle of flow deviation can be determined in the first approximation from the

boundary layer displacement thiekness on the plate.

The value of the shape parameter H is calculated by the formula (for _< 1)

H=[2,41¢* + 1,38_q,--0,52][1 + 0,05hi. (8-3-6)

The flow is deflected appreciably under strong injection; in the first approximation,

therefore, we can write

d_*"--H d_°* H _
tgm-_ ---_--- -_--= lw, (8-3-7)

where w is the angle of flow deviation.

Using gas-dynamic functions [39], the shock intensity and the gas parameters
behind the shoek are determined by the method of successive approximation.

The position of the shock, calculated by the proposed method, is shown in Fig.

8.14. Satisfactory agreement between calculation and experiment is noted.

/218

8.4. Solution of the Equations of Momentum and Energy on a Permeable Surface
of Weak Curvature

The integral momentum relation for a plane turbulent boundary layer on a perme-
able surface can be written conveniently in the following form:

dr¢_ °** _t-(l-{=H) l_e'**, dWo ___t_eL c_, (_'q-b), (8-4-1)Wo d_

where Re**0o=pow06**/_t0o; H=6"/6"*; ReL----powoL/_too; err= (Ct/C/o)Re'*; b--Tw (2[Cto).

The dependence of the shape parameter H on the non-isothermicity and injection is

determined by the formula
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H ¢&' (1 q- 0,05b) H0, (8-4-2)
== _c--p

where _t=iwfi0; _cp= Cpw/Cr_; _g= MdMw ; Ho= !,347.

For a constant value of the permeability parameter and for constant surface tem-

perature of the body we get from (8-4-1)

I
(8-4-3)

where Re**w=p0woS**/.Uw: Rew =O.=',,,L/pw; _,,=::'/::'.),: ×=I+H: 2=x,'L ; q' is deter-

mined by (8-3-4). The local friction coefficients are found by the formula

¢t __ _ B •
_ ao 2Rew,n

(8-4-4)
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For an axisymmetric boundary layer we have

l [__Bl_eowD-°+m_(tF-at-b)Re"'w-- _,;

7 t.-2-

x_S + ]'+"
(8-4-5)

For a flow without a gradient dw0/cl_ = 0 and Eqs. (8-4-3) and (8-4-4) reduce to
Eqs. (8-1-5). A solution is obtained for Eq. _8-4-1) for critical injection conditions.
In this case

Re**w = wo" B .,_0w_crlt I - --
L--

!
(8-4-6)

where bcrit is determined by (8-3-5). The corresponding law of distribution of injected

gas that gives rise to boundary layer separation is found from the formula

]w=_ - eft _crit (8-4-7)

The other limit solution corresponds to the case of gas suction from the surface

according to the law

cf
_=---T- (8-4-8)
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Then, from Eq. (8-4-1) weget

d Re'*w Rew d=.o O.d_ +(I+H) _,. __ (8-4-9)

Hence, taking H = const in the first approximation, we have

R_eeW /_'o 'I+H

(8-4-10)

From Eq. (8-4-8) it follows that

_b crit _ -- IF _ -- _,tlr m (l -- b) 2, (8-4-11)

and therefore

l;- 2 +'2bcrit+ V '2 +bcrit_ -- 2 1. (8-4-12)

Thus, tmowing the dependence of Re** and b on x, we get the law of gas suction
w

from the surface corresponding to the self-similar solution:

]w _ Powob B
2(Re**w)" (8-4-13)

A second approximation can be introduced using the dependence of the shape

parameter H on the injection parameter b. A solution to the problem can be obtained
in more complicated form for the case of a _ven transverse mass flow distribution
over the surface of the body.

As the first approximation we can use the solution for a given distribution of the

permeability parameter b = f(x), with Cfo/2 being determined from the integral

momentum relation for an impermeable wall (7-2-11).

Then,

2
b== [w ¢-1_--_ [ (x) (8-4-14)

and from Eq. (8-4-1) we get

[_e..w =e- _ (l_n)-:_-tn_' [__T. B [_eow i (Woo___b)(,+_)

It+HI--_ In-'Uo

Xe a, _odZ+ C] "+'.
J

(8-4-15)

The local friction coefficients are found by formula (8-4-4). The second approxi-
mation is obtained after substituting Re** from (8-4-15) into (8-4-14).

W
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For the inner axisymmetric problem of gas flow in a nozzle, taking Eq. (7-2-47)
into account,wehave

! [14-,,,BReooD-(t+m)S{_ .._.b )Re°'w = _-c 1

I

--t m+l

XUO +'n) H_ ,'--' dz-{-C I •

(8-4-16)

The dimensionless velocity U is linked to the duct geometry by the formula

t
!

U(l--u')"-' fk-i_o.s f 2 ,_+-, pc_t
= _k---_--rj t_-+--r) 7 •

(8-4-17)

The energy equation of a two-dimensional boundary layer on a permeable surface
can be written conveniently in the following form:

d Re**l Re**l d(Ai)
dt _ Ai d_ = ReLSt, (tits -{- b,), (8-4-18)

where

_e**i _ PoWo_**/'_*; I_e L "-" PowoLflx*;

Ai = i"w -- iw; z = x/L; tF s = (St,/Sto)me. ; b_ = ?w 'St,.

Let us consider the thermal energy balance on a permeable surfaee.
8.15 it follows that

From Fig.

_s_b _ K (8-4-19)--_-,

where K = (i_--i') is the generalized phase transition criterion introduced in [43];
(i'_ -- G,)

q_ + qz_a

a = 1 -- =(i',,--i,,) ; qR is the radiative heat flux; and qcond is the conductive heat flux.

For the case qR = qcond = 0 we have

d Rei'l Re*'t d (Ai)
dl "_ _ ,/i --RCLStob, (1 nt-K). (8-4-20)

Solving Eqs. (8-3-1) and (8-4-19) for the thermal permeability parameter we get

bg --- b, crit 2_'_---_Mt V Kb---_--_t | --
(8-4-21)
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• , G'_.:4,, J

_'_'¢$, •[i jw Q, FIG. 8.15. Thermal energy balance in a

-,-g :r _: _ permeable surface.

w I _,e "

The values of b. and K are determined as functions of g from Eqs. (8-4-19) and
l

(8-4-21) for known functions i w, i' and known parameters at the outer edge of the

boundary layer. The integral of the energ7 equation is written as

I

x o+ e, }'"'.

(8-4-22)

In calculations of porous cooling the mass flow of coolant gas is usually the desired
variable; it is defined by the formula

jw =powoStobi, (8-4-23)

where

St._BPr-'"' ; Re**, . _Re**;(_--,)2Re;_ w •

For the subsonic gas flow region, with constant T

tion Re** T = 0 at _ = 0, we have w

and T and the boundary eondi-

z !

{, I -t- m Bbr ( l nt. K) Re, w I _o dx l_-_TRe**r w -'- 2"Pr'." I (8-4-24)

Taking (8-4-23) into account we get

_rIl_h br _'
br crit]/St_

,----,[gK2-'-]%-- . , (8-4-25)

where St0x are the local values of the Stanton number on an impermeable surface for

the same Re and an analogous law of velocity variation at the outer edge of the
x

boundary layer over the length, with T = const.
W

/223

179



\Vehavethe following relationship betweenSt0,the Stantonnumbercalculated from
the actual valueof Re T' but without allowancefor the effect of transverse mass flow,
and Styx:

#71

br V 1_';T (8-4-26)

and

brl= bT

,+" (S-4-27)

To determine the mass distribution of injected gas over the surface of the body,

we get from Eqs. (8-4-26) and (8-4-24)

B
T br

]w = p,w. . -_ . • (8-4-28)

"-'_" [B(m + h S 1-+'(br l°+ /0} L ? Ne--'Ts- Re., _, d2
0

Taking B/2 =0.0128, m = 0.25 and Pr =0.72, we have

@8
Jw "-+ P+wo (t +K)0.,

(8-4-29)

For flow over the forward portion of blunt-nosed bodies the law of velocity varia-

tion at the outer edge of the boundary layer is close to the linear law:

_o= C£., (8-4-30)

where the value of the constant C depends on the shape of the body in the flow.

For this case we get from Eq. (8-4-28)

I

_II_IPIIC -_b_ +1 21.1

(,+x) ++' IF+('+m+.,)R°+,__c]-+,
;For B/2 = 0.0128, m = 0.25 and Pr = 0.72 we have

l_Im.,b°.a._.+C°,.
Jw --_

(I + K_'.=P_ 0'2 "
"'_ "'_01

(8-4-31)

(8-4-32)

180

/224



In conformity with the Reynolds analogy, formulas (8-1-9) and (8-1-12) remain

valid for the case of longitudinal flow around a flat plate. From Eq. (8-4-21) it follows

that the case b T = const corresponds to the case of T w = const being considered.

From Eq. (8-4-29) we have

b 0'8 _ - .,.,

]w----Powo (1 +K)°., " .2 (8-4-33)Reoi

From Eqs. (8-4-32) and (8-4-33) it follows that to maintain constant emperature
of a plate in a longitudinal flow, the mass flow rate of the injected gas must decrease

in inverse proportion to _0.2, while in a transverse flow it must increase in proportion
to _.6

In the case of a given mass flow of coolant gas the thermal boundary layer equation
can be written as

d (re**,ai) Re. 1 [ i'w- ,' )a_ -- :\_--- _ , (8-4- 34)

where Re*L=j¢,L/_* and i' is the enthalpy of the injected gas.

For the region of subsonic velocities and constant physical parameters

d (Re**raP)
as = _e* L (1 nt- K). (8-4-35)

The integral of Eq. (8-4-35) under the boundary condition Re** T = 0 at _ = 0, is

x

Re**raT = (To --r') Rec, [ )'w, dx
0

(8-4-36)

or

g-t-I =
Re** r

x

Re,_J' i-_,d_
0

(8-4-37)

where ReL,=poiwoL/_t*, _w =]w/po,Wo,, and p0,w0, is the specific mass flow in the section
_=0.

On the other hand, it follows from Eq. (8-4-19) that

brcrit] (8-4- 38)

From Eqs. (8-4-37) and (8-4-38) it follows that
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0

Thus, the dependence of the number Re** T = f(x) in the ease of a given mass flow

of coolant gas is obtained directly from the energy equation {8-4-34) and the equation of
heat balance on the surface (8-4-38), The local values of the, Stanton number are

determined by the formula

St ---
brcrit]

=_

/'l br _' teL' _"
(8-4-40)

Strictly speaking, Eq. (8-4-40) is valid for the boundary conditions b T = eonst,

but, in analogy with the law of heat transfer on a permeable plate, it can be assumed
that heat transfer law (8-4-40) is conservative to variation in the mass flow rate of the
injected gas over the length of the plate.

0

b
1 2 J ( 5 #

FIG. 8.16. Effect of various gas injection laws on
the heat-transfer law. 1--calculated by (5-2-1);

2--calculated by (8-,2-1) for Re** T = 100. The

points represent the experiments of Whitten,
Moffett and Kays [244].
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The results of an experimental check of this hypothesis are given in Fig. 8.16.
The experimental points in the figure, taken from [244], correspond to different laws
of mass flow distribution of injected gas over the length. As can be seen from the

figure, the experimental data confirm that the heat-transfer law is conservative to
variation of the boundary conditions and are in satisfactory agreement with formula

(8-4-40). Equations (8-4-39) and (8-4-40) are solved for T w by the method of
successive approximation.

For the case Jw = const we have

!

brc_,;-br]} _' (8-4-41)

and

B * _ br _'
T_t(1 brcrit ]

St -- (8-4-42)

From Eqs. (7-2-67} and (8-4-42) it follows that

r

V,(l-- at" '.... br---._"_t)
II

[,(, .T,'
(8-4-43)

where Styx is the Stanton number on an impermeable surface for the same value of Re x

and the same law of variation in mass velocity over length at the outer edge of the
boundary layer.

Comparing (8-4-43) and (8-4-25) we have

st _ f st
_)R..= ksL-j/_. (8-4-44)

for arbitrary but like velocity distributions at the outer edge of the boundary layer.

Accordingly,

bT,

b T

m

[,( 1.
(8 -4-45)

For quasi-isothermal conditions (_t _ 1.0; bTcri t = 4.0), the sequence of wall-

temperature calculation is as follows:
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1. We determine St** from Eq. (7-2-67) for given Re .
0x x

2. We determine bTx -

Jw 1

p0w0 St
0x

3. We calculate b T from Eq. (8-4-45) and St from Eq. /8-4-43).

4. We determine the value of the Kutateladze number:

K --'- P:=' St
Iw or K = _'b/b r

and the dependence of the wall temperature on _:

Tw -- Kr, + r' (8-4-46)
,+K "

In the case Jw = const, it follows from Eqs. (8-4-21), (8-4-36) and (8-4-38) for the

region M 0 > 1 that

(R%L2),.,,pro.,, T._2S

0,0128_. "

et|- .

(8-4-47)

In this equation the left-hand side represents a certain function F, dependent only
on the enthalpy ratio

v_,=i, lio, ¢'=i'lio, K= (,,-.-_')l(t-._,)

and M o.

The results of calculating the function F by Eq..(8-4-47) are presented in Figs.
8.17 and 8.18. This auxiliary graph makes it much easier to calculate the tempera-

ture of a porous wall for constant mass flow of injected gas and arbitrary law of
velocity variation at the outer edge of the boundary layer. With a known w 0 = f(_ for a

given Jw the right-hand side of the equation is a known function of _. Then the desired

wall temperature is determined in Fig. 8.15 from a given value of ,' and M 0.

In the more general case, the problem is solved by the method of successive
approximation, taking into account the effect of non-isothermicity of the chemical

reactions and the inhomogeneity of the injected gas on q't and bTcrit.

The proposed method of calculating a thermal turbulent boundary layer is not diffi-

cult to apply to the case of an axisymmetric boundary layer. In this case the integral
energy relation is written in the form

I dR,[
dRe*',_ Re*', d(ai) _..__,.__[=ReLStob_( 1 + K).4Z = Al d_e

(8-4-48)
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FIG. 8.17. Dependence of the function F and of

bTcri t on non-isothermicity and compressibility;

= . 1--d = 0.392; 2--d = 0.64; 3--d=0.812;d i'/i** w

4--d = 1.23; 5--d = 1.4; 6--d = 1.56; 7--d = 1.73.

FIG. 8.18. Dependence of the function F and of
b on non-isothermicity and compressibility in

crit

the porous wall cooling region, d = i"'**/l w" 1--d

= 0.392; 2--d = 0.64; 3-d = 0.812; 4--d = 1.23;
6--d = 1.4; 6--d = 1.56; 7--d = 1.73.

185



The rest of the reasoning is as before. For the internal problem {gas flow in a

nozzle with porous walls) it is convenient to make use of continuity equation ¢8-4-17).

Then the integral of Eq. ¢8-4-48) is written as

nW

i s

X S b, (l -_- K) Ai:- roD"-: dz -_- (Re**iAi/,)' +"}n+--W
(8-4-49)

With a given geometry of the nozzle flow section and a given variation of the

parameters All, b i and K with respect to _, the local values of Re.**1 are determined

from Eq. (8-4-49) and the mass flow distribution of the injected gas by (8-4-23).

This method of calculation is based on the assumption that the heat-transfer law is

conservative to a longitudinal pressure gradient. But, as shown in the paper of Baylay
and Turner [104], this method can also be applied to the case of appreciable longitudi-

nal gradients if the effect of the pressure gradient on the critical permeability param-
eter is taken into account in the heat-transfer law. For the case of flow around the

porous blade for gas turbine, according to [104],

bcrit ( t _ue.)-,bcrit_- 1 (8-4- 50)Wo d2

when _ = x/L and L is the blade chord.

It should be noted that formula ¢8-4-50) is in satisfactory agreement with the
theoretical formula ¢6-5-17).

The results of processing the experiments of Baylay and Turner on the local heat-

transfer coefficients on the blade of a gas turbine with pore cooling [104] are given in

Fig. 8.19.

kcal/(m 2 • hrs/deg)

2250-
1

2_
_"OD.( :ave

o 'e "i '6 8 '

p l

i '

ii

: ".'_J,2
o "C--J

o

VgVI

i
!

l

-..,, !
i-I r-_-

i

k7 1g _ I6 18 2O
Blade surface, no. of the station

FIG. 8.19. Distribution of heat transfer
coefficients over the surface of a porous

blade of a gas turbine. The curves were
calculated by the proposed method: 1--

= 0.376; 2--¢ =0. 437; the experiments

of Baylay and Turner [104]: (_--_b

= 0.485; 0--¢ =0.437; o--¢= 0.376.
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The agreement between theory and experiment for a concave blade surface, con-

sidering the exceptional complexity of the experiment, must be assessed as being good.

The deviation of the experimental data from the calculated curve on the convex blade

surface can be explained by the laminarizing effect of the longitudinal pressure gra-

dient, which is disregarded in the proposed theory.

8.5. Turbulent Boundary Layer on a Permeable Surface in the Presence of Chemical
Reactions

The method outlined in Section 8.4 for calculating a turbulent boundary layer can
be applied to the case when chemical reaction takes place in the flow and on the sur-

face of a body.

The integral energy relation in this case has the form

d Re'" a -[- Re..i: = ReLSt._ (1 nu bi,), (8-5-1)
dZ (Ai.) d£

where

lZw

St,_ _---St z -_ qw tPoWoAi,.; hi,: = i*_ w -- ir w;

is the total equilibrium enthalpy at the wall; iZw is the total enthalpy at the wall;

b_, _ [w "_t," (8-5-2)

In many practical cases itis possible to neglect thermal diffusion, pressure diffu-

sion and diffusion thermal conductivity. Then,

• t$

%'=--_L oy ,_'_-o-;'t-----_',_-j.,,
I=l _I

(8-5-3)

where

n

1_ = i_ 4- r (w 2./2); i_ -_- _ c,i,;

r

i° is the heat of formation of the i-th component; and
I

I

f,o=j p...\

For the subsonic gas flow region i_ = i E and l_w'* = i_ 0"
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Let us examinethe caseof a "frozen" boundarylayer, whenall the chemical
reactions takeplace on the surfaceandthe intensity of burn-up of the material is
governedby the process of oxidizer diffusion throughthe boundarylayer to the sur-
face of the body.

For theseconditions, taldngthe total enthalpydistribution andthe reducedoxidizer
concentrationsover the boundary-layer cross sectionto be similar,

l': ,_- l. ,, -- 1_])._ (@w
(8-5-4)

and taking into account the mass balance of the surface, (5-5-6), for

Le -_--pDCp/Z _ 1,

we get

(4). - (,,°)w (8-5-5)
b_,-- (¢?),,,

Here c o is the reduced concentration of the i-th chemical element, for which the
l

heat-transfer surface is impermeable, regardless of the chemical compound contain-

ing it.

Accordingly, for the injected component we have

¢aw (C) (8-5-6)
h'= i-,_ (c)

For example, let us consider the case of chemical erosion of carbon in a flow of a

mixture of gases, the combustion products of an organic fuel. The energy balance at
the heat-transfer surface, neglecting radiation heat transfer, has the form

qw _ = qw + lwi": w -- lwl"z w' (8-5-7)

where

here lEw" is the total gas enthalpy near the surface, i Nw is the total enthalpy of the

material in the solid state, and i_ is the total heat of reaction.

The gas mixture acting on the carbon surface has a complex composition, in the
general case. The chemical erosion of the carbon under these conditions is promoted
by a complex of oxidative reduction reactions in the surface of the body. The following

can be considered to be the most probable reactions up to T = 4,000 ° K:
W
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O-bC--- CO;

o,+c-.co;-y

OH-f-C-_ CO+H;

NO+C -,. CO+N;

H,O-bC--- CO+H,;

CO, q-C-- 203.

(8-5-8)

The total heat of reaction is defined by the formula

4 t$

Q'=E (8-5-9)

where Qp is the total thermal effect of all the reactions taking place on the surface,

and n is the number of moles of one product or other participating in the reaction.

After relatively simple transformations of Eq. (8-5-7), taking (8-5-8) into account,
we get

(8-5-10)

The parameter bil is defined from (8-5-5), allowing for the fact that

(c_®--_ m,. .(C_)o, (8-5-11)

I=,!

where mi/M is the molar fraction of the i-th element, and p is the number of chemical]
compounds containing the i-th element.

For example, the reduced concentration (c°0)° of oxygen in the free stream for a
complex gas composition is

16 16 (H,O) + 16 16¢_ (O)=¢. (O,) -[- -Tf ¢, (OH) -{- -_c, _c.(NO)2r-4Tc.(CO,)-{-... (8-5-12) /235

Here c0(O2),c0(OH), c0(H20), etc. are theweight fractionsof the chemically
active, oxygen-containing compounds in the free stream.

From Eqs. (8-5-5) and (8-5-11) it follows that

! mo 16

b_,- 16. _ (c_)o---i_Cw (CO .
_" Cw (CO) =

On the other hand, from Eq. 8-5-6) we can get

(8-5-13)
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16 b,, (8-5-14)
e.(CO)= 28 l +b,,'

and therefore

, ](C_)o
I=!

(8-5-15)

Here m 0 is the weight fraction of the chemically action oxygen and Mj is the molec-
ular weight of the j-th component containing oxygen.

In the first approximation we take qw = 0 in Eq. (8-5-10) and find i2_ w and Tw.

Then, by solving the problem of thermal conductivity of a semi-bounded body with a

shifting outer edge and given T w, we determine qw and, by Eq. (8-5-10), we find iZw

in the second approximation, which is usually sufficient for the case of burn-up of

thermally insulated coatings. In more complex cases it is necessary to solve the

conjugate problem.

Determining iZw, we find _s from Eq. (5-5-17) and carry out the integration of

Eq. (8-5-1). For the case iZw = const we have

/ '+" IRe**aw_--- 21_0" BWs(l -}-bi,) Re0w _0dJt; • (8-5-16)

The quantity of burned material is determined by the formula

Iw --'--Nw,b,',St, Fs' (8-5-17)

where

B
S|e --- 21::_,,ds(Re'*itw)m

For the case of gas flow in a nozzle the integral of (8-5-1) can be written conven-

iently in the form

Ree*aw =I-- 2 Pr*,TM -- D [ e(_ _-_) V_(I+b_,)

2"

r(°)'"-]".
o

(8-5-18)

where D = D/Dcrit, Dcrit is the diameter of the nozzle throat section, R,

and b is the mass gas flow through the nozzle.

4G

= v guwDcri t ,

Various heat-resistant coatings are an effective means of protecting the surface of

a body from high heat fluxes. These coatings are usually porous carbonized layers
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filled with material with a high yield of volatiles (based on phenol resins). Some coat-

ings give off up to 70c/c (by weight) of gaseous materials when they decompose. The
intense crossflow of gas on the surface of the body reduces the heat flux and, there-

fore, the burning rate of the carbon base. We write the heat flux reaching the wall as

qw ='qwl+qw2, (8-5-19)

where qwt is the heat that goes to heat the carbon residue and Clw2 is the heat that goes

to heat the gases to wall temperature _here too is the convenient place to put the heat
of conversion of the decomposition products, i_, which goes to evaporate the water

evolved during decomposition of the resins, the additional decomposition of the heavy

hydrocarbon, etc. ).

Thus,

• .p
q.,= i., [t., + ,_.--i'l. (8-5-20)

Then the thermal energy balance on the surface is written as

• -0qw= lw,'= "tt'lw, [iw, nLi=_ --i'l Jcqw,, (8-5-21)

where i' is the heat content of the material at a temperature corresponding to the onset

of destruction of the coating material. After appropriate transformations we have

l=w = {zo+ b'i,_ -4- b"i, [iw,--t-i _ -- i'l

-t- q*' -- i.-0)0.--7(i;.

(8-5-22)

The permeability parameter b'. is governed only by the chemical erosion and is

found by formula (8-5-15). _1

The permeability parameter b:' depends on the yield of volatile substance, i.e. it
11

is the thermophysical characteristic of the material.

The total permeability parameter, which takes into account the effect of the cross-
flow of material on the heat transfer and is contained in the integral energy relation, is

b_l =, b'll+ b_il. (8- 5-23)

The heat content at the wall i is determined, as before, by the method of succes-
W

sire approximation. After solving the problem of nonstationary thermal conductivity

with a shifting outer boundary at temperature T w, we find the rate of heating of the

material, the quantity of gas evolved (Jw2) and qwt" Then we determine T w in the

second approximation. The further sequence of calculation is similar to the preceding

case. The rate of burn-up of the carbon base is

]_,--" b'i,PowoSty.. (8-5-24)
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SinceSt_ is definedwith allowancefor the effect of the overall crossflow of

material, i.e. bil = b'.ll + b:'ll, formula (8-5-24) shows a substantial decrease in burn-

up of the graphite base with increasing yield of volatiles ,that is, b'_l).

A comparison of the experimental data of Bartlet and Denison on the burn-up of a
graphite duct [126] with the results of the proposed computational method is given in

Figs. 8.20 and 8.21. As can be seen from the comparison, this method takes quite
good account of the effect of such factors as pressure, temperature and concentration

of the oxidizer in the gas flow on the graphite erosion rate.

221Zmm _ mn ]h f

,.o,s-- _J i zo_ ----._=:;::_-.... 1,52_ a

l,Ot6 [

2 5 I0 sect4 0 5_8, I015 t5Z,,÷ZO._2mm

Fig. _. 20 Fig. 8.21

FIG. 8.20. Dependence of the burn-up of a graphite
duct on time. The curve was calculated by the

method proposed here; the points represent the ex-

periments of Bartlet and Denison [126].

FIG. 8.21. Burn-up of a graphite duct over the

length. The curve was calculated by the method
proposed here; the points represent the experi-
ments of Bartlet and Denison [126].

Since the duct was relatively short, all the calculations were made as for a flat

plate.

In Fig. 8.22 the results of experiments of E. P. Volchkov, E. G. Zaulichnyy,
A. I. Leont'ev and E. I. Sinaiko [14] on the burn-up of a graphite duct are compared

with the proposed computational method. Shown in the graph is the change in thick-

ness of the burned layer over the length of the duct. Curve 1 corresponds to calcula-
tion by the Reynolds analogy without accounting for the effect of non-isothermicity and

crossflow of material by the formula

jw =p_b.Sto, (8-5-25)

where St.--_0,029 RC ''_pr-*.'; b. _-_3/4 (Ko)*for the diffusion region, and bi,= 0,173 for

o,231.

Curves 2 and 3 correspond to calculation by the proposed method, on the basis of

this method we get for the conditions being examined

St z = 0,029t_e?" Pr-°'6_F'.' (I -,{- bi,)-"' \--_-_-j
18-5-26)
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FIG. 8.22. Burn-up of a graphite duct over the length
1--calculation by Reynolds analogy without allowing
for the effect of nonisothermicity and crossflow of
material on the heat-transfer coefficient; 2, 3--calcu-
lation by the proposed method; experiments of [14]:
O--7oW o=362 kg/(m 2. sec); T= 63 sec; O--7oW o= 67

kg/(m 2- sec); T=144 sec.
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FIG. 8.23. Generalized data on mass transfer during
the burn-up of a graphite surface. Curve calculated
by (8-5-27).

_' T Experl-

Experiments of 14 ]men_sof

1 I,o. 1 I
or

K = S_Pr,."(l'+ b,,) = 0,0291_e_.0._ (8-5-27)

As follows from Fig. 8.22, non-isothermicity and crossflow of material exert an
appreciable influence on the rate of burn-up of the graphite surface, and this effect is
taken into good account b'¢ the proposed computational method.

All the experimental data of [14] and [26] are compared with formula (8-5-27) in
Fig. 8.23. Satisfactory agreement between theory and experiment can be noted. As
was demonstrated earlier, the relative law of heat transfer for the conditions being
examined can be written as

Ws=W_W_. (8-5-28)
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where

W"--*-(]/'_-{-1 )t; IITb( l b_critjb''_'.,

The calculations show that for the experimental conditions of [14] and [126] the effect
of crossflow of material on _I, lies in the limits of 12%, that is, essentially within the

limits of experimental accuracy. Non-isothermicity has the principal effect on ,I,
s

and, accordingly, on Jw; for the conditions of the experiments being examined the non-

isothermicity (_9,0) reduces the heat-transfer coefficient by a factor of about 2.5,
and it is not permissible to disregard this effect in engineering calculation.
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8.6. Turbulent Boundary Layer in the Initial Section of a Pipe under Non-isothermal
and Injection Conditions

A crossflow of material at the pipe walls can have an appreciable effect on the gas
parameters in the flow case in the initial section of a pipe. This effect can be taken

into account by simultaneous solution of the momentum, energy and continuity equa-
tions.

Let us consider the case of subsonic gas flow velocities at the entrance to a

cylindrical duct with a uniform distribution of all the parameters in the initial section
of the duct. We shall assume that the turbulent boundary layer forms from the initial

section downstream. A diagram of this problem is shown in Fig. 8.24.

tR *.

Jw, r rw

FIG. 8.24. Diagram of boundary-

layer development in the initial
section of a porous pipe.

In the general case the mass flow distribution of the injected gas over the pipe
length and the initial parameters of the cooling gas are prescribed. It is required to

determine the distribution of static pressure, friction and heat-transfer coefficients,

the wall temperature, the concentration of injected gas at the wall and the length of
the initial section.

The continuity equation for these conditions is written in the form

where

poW,, R¢'_l 1"

l_e** --_powj,**.'l**.Rem; Reo, -_'pow,,D'p.;

_o=mo:Wo,; H=_*/a**; *_x'D;

'8-6-1)
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P01,w01 are the density and velocity in the initial section and u, is the characteristic
viscosity, which is constant over the length.

The integral momentum relation can be written conveniently in the following form:

+(l+tO _. ,a
(8-6-2)

where

}--x_e;,; b-- 1_ ,, 2 _...
Nw* ]_eDt -_- t<e .

The function _P is defined by formulas (5-3-2) and (5-3-3), and the function H by

(5-3-12). The considerable non-linearity of Eq. {8-6-2) does not permit obtaining

an analytic solution in the general formulation. But for some particular cases the

solution reduces to simple quadratures.

For the case b = const and i = const, we get from Eqs. (8-6-1) and (8-6-2)
W

and

,,_ (_+t _ I)"*

X_ [(2+tt) _m+,
I

(8-6-3)

Re _-" ,4 (b (2_t. H) _k H (ty +b)} _ ., (8-6-4)

where

(l+H)b
b+H (_'÷b) •

For b = 0 and m = 0.25 we get formulas (7-4-20) and (7-4-22) for a pipe with
impermeable walls.

Let us determine the length of the initial section from the condition that the
boundary-layer thickness in the initial section becomes equal to the pipe radius. Then,

Re u=T _0sa_-_. (8-6-5)

Simultaneous solution of Eqs. (8-6-3) and (8-6-5) yields
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I

/ /W_ a

+ b --2 -- [b (2+/-/) +/-/(_ + _]
fe

_8-6-6)

The result of calculating the dimensionless velocity distribution ('w0 = w0/w01),
according to the literature, are given in Fig. 8.25 for three values of the permeability
parameter and for the injection of various gases. As can be seen from the graph,
injection of a heavier gas has a lesser effect on the velocity in the potential flow core,
in that the length of the initial section ffor identical permeability parameters)
decreases.

S a.-_
u W_,

o o.( o,a _2 ¢6 2,0 _(

Z.
//
W"

- ,x

FIG. 8.25. Velocity distribution in the
potential flow core over the pipe len_h
for various injection gases. Calcula-
tions by (8-6-3) and _8-6-6). w air-
air; - - - CO2-air;- • -- Freon-air;
.... boundary of the initial section
according to (8-6-6); 1--b = 0; 2-- b
=2; 3--b = 4.

With increasing injection of a homogeneous gas, the length of the stabilization
section increases. Thus, e.g., with critical injection of air into air under quasi-

isothermal conditions and like values of RED1, the length of the stabilization section

increases by a factor greater than 2 compared to that for a pipe with impermeable
walls. This factor can be of great importance in processing experimental data in
the initial section of a porous pipe.

To evaluate this effect we can make use of Fig. 8.26, where results are given of
a calculation, by the proposed method, of the velocity w 0 for injection of a homogeneous
gas under quasi-isothermal conditions at various values of b.

I3 '5
4

, ./>;i

FIG. 8.26. Variation of the dimensionless velocity
over the length of a pipe for injection of a homo-
geneous gas (the case b = const), m calculation
by (8-6-3); - - - boundary of the initial section
according to (8-6-6): 1--b = 0, 2--b = 1; 3--b=2;
4--b = 3; 5--b = 4.

Let us consider the other extreme case of constant mass flow of injected gas over
the pipe length, corresponding to the condition

/w/Oeimo_= const.

In this case system of Eqs. _8-6-1) and (8-6-2) reduces to the form
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4R-_,o 1+4 _H,_.ow_-' -- (z + //) 4b(V + b) -' Re'°e' _8-6-7)
"-_-'_-=--'_ 4_nbtt, -F 4t1 -t-4b (_ -t-b)-' ;
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= (wo-- I -- 4H 1_*') (47w Re_,)-', (8-6-8)
Re_,

where '_w"-/w/Po,=o,; b=Tw _e_, _,,m/_,.

The relationship between w-0 and Re** can be found by numerical solution of Eq.
(8-6-7). The results of calculations by Eqs. (8-6-7) and (8-6-8) for injection of a

homogeneous gas under quasi-isothermal conditions are shown in Fig. 8.27. In Fig.
8.28 the results of measuring the velocity in the flow core given in [71] are compared
with the proposed computational method. As can be seen from the graph, the agree-
ment between theory and experiment is satisfactory.

/2 2

t:o 711 R_°'I

FIG. 8.27. Variation of the dimensionless velocity
over the pipe length for injection of a homogeneous

Jw
- - const). -- calculation bygas (the case Jw p0w0

(8-6-7) and t8-6-8); - - - boundary of the initial
section.

, ,t '1 ,I ,I,
l010 10.101o,102 fo.

For a duct with an impermeable end face {P0tw01 = 0), the momentum equation can
be written conveniently in the form

4= T_" _/'/) Reo a_ 2 Re'" (8-6-9)

For the case b = const, continuity equation (8-6-1) has the form
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o o.z o2 oJ _ _5 06 t_
7

FIG. 8.28. Variation of the dimensionless velocity
on the axis of a pipe with permeable walls. Curves

calculated by (8-6-7) and (8-6-8); the points repre-
sent the experiments of [71].

No. ofthecurve I a $ I # ¢ ] S

T.,=,o_= o,mI' I-!'.'-
7

4H l_e*" _--- l_ea-- 4 _ Pew dz,

where Rev=powoD/p..; Rew =iwD/_..

Accordingly,

= Rew Re.._.
b--'_ B Rea,

Equation (8-6-9), with (8-6-11) taken into account, is written as

4 Re"-- d2

Differentiating Eq. (8-6-10) we get

d_ I d Re"
Rew U_'_-o "---_-- H dRe 0 •

(8-6-10)

(8-6-11)

(8-6-12)

(8-6-13)
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Substituting this relation into Eq. (8-6-12) we get

{ I+H.__ }d Re=*_I_/I Re**d ReD --'- 4"'H) Reo
(8-6-14)
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The integral of Eq. (8-6-14) for the boundary conditions Re** = 0 with Re D = 0
has the form

Re" ° = cReo, (8-6-15)

where

_+_
$-'_--4 {b (2 .-}-H) --J-H (_ + b)}

Substituting (8-6-15) into (8-6-13) and (8-6-10) we obtain

Re_ = d-,T, (8-6-16)

where

d_ - B ml {4[b(2+ H)+H(_V+b)I}m+
2 2+/-/ (* + b)"

and
| _-/fil

B h Rep r)z_-_- ' (8-6-17)

where
I--m I I

Thus, when m = 0.25, the mass gas flow through the permeable wall under the

condition b = const increases over the length of the pipe proportionally to x-3. Since

b = b1@ and @ is a single-valued function of b t [see (5-3-2), (5-3-3) and (5-5-7)], for-
mulas (8-6-15), (8-6-16) and (8-6-17) can also be applied to the conditions b I = const.

As was shown in Chapter 5, these conditions are met when chemical erosion of the
wall material in the diffusion section occurs.

For a duct with an impermeable end face in the case Jw = const we have from
Eq. (8-6-10)

4HRe'* - Reo--4Rew_';

from it we get

ReO- 4H Re"

Z _ 4Rew

Substituting dx/dRe D from (8-6-18) into Eq. (8-6-13) and considering that

H = H 0 /1 + kb), after transformations we get

4#
dRe'" i + [4Hddp-- (1 +//) _1 _

a Re,t) 4I-I + 4Hekmb +

(8-6-18)

(8-6-19)
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4--' "

0 !

: "_
2 ,,r _ 5 6 7 8 9 JO

FIG. 8.29. Variation of the dimensionless velocity

on the axis of a pipe with porous walls and on im-
permeable end face. Curves calculated by (8-6-18)
and (8-6-19); the points represent the experiments

of [71].

No. ofthecurve I $ [ $ [ # I S

I-1-1,,,1 ,-
For the permeability parameter b we have the formula

2 Rew Re'*". (8-6-20)
b-_ 8 Re o

Nonlinear Eq. (8-6-19) can be integrated numerically, taking (8-6-20) and (8-6-18)

into account. Using relation (8-6-18), it is possible to get the variation of Re D and

Re** over the length of the pipe.

The results of a numerical calculation of the variation of Re D = P°w°D carried out
U 0

on an M-20 computer by the Range-Kutta method (for B = 0. 0128, k = 0.05 and
m = 0.25) are compared in Fig. 8.29 with the experiments of A. I. Leont'ev, A. V.

Fafurin and N. V. Nikitin [71].

The energy equation (8-4-18), taking (8-4-19) into account, can be written con-

veniently as

R.e_ ' == l_---_,t) h Reo, d R_m
(8-6-21)

where _'=i'/io, and i'is the critical enthalpy of the injected gas.

For a given law of distribution of the injected gas over the length of the pipe, the
local values of Re**. can be determined from (8-6-21).

1
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Let us consider the case b i = const, which corresponds to the condition iw

From (8-6-21) it follows that:

l 1--_,' B
I,", re,"' d Re"_ : _ T

i,

Xbl_ _,d _ '-
o _ re_,j

= const.

(8-6-22)

Taking (8-6-2) intoaccount, we get

V4-b
ge'_= 4{(2+ H) a+ H (_+ b)]_'.'

-_ (re+l)--1X _ b_-_-_j (2+H) w 0

!

!

(_+'- 1)" I - 1'_"

An analytic solution of this problem can be obtained if we set Re**

continuity equation. Then,

Re_= 4H Re°°_ + Rem (1 + 40),

J

O -- _ lw de. Consequently, jw/P0,_,, -'_ dO/d_.
where J P.,:.,

0

The energy equation can be written in the form

4 l_e'*t _ + b Pe dG
d,_ -- a-?'-" m-_""

(8-6-23)

= Re**. in the
l

(8-6-24)

(8-6-25)

/24___.99

Integrating, we get

Re'_: vo--_ ReolG.
(8 -6-26)

Taking m = 0.25, B/2 = 0.0128, Pr = 1.0 and allowing for (8-6-24) we get

A6","dG --,42

where

_em

"1_ 0,012_
B=4.'+b' +4.

0 t

(8-6-27)
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The integral of Eq. (8-6-27) is

• 4

x[ T
4 !

V T -a'

(8-6-28)

The law of distribution of injection over the length is found from Eq. (8-6-27) :

Iw 1 +B(_
h-_-_-----_ . (8-6-29)

For the ease jw/PolWol = const itfollows from (8-6-21) that

(_', Re_,) :_ (8-6-30)

or, introducing the dimensionless enthalpy,

i,--iw (8-6-31)

and
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Re"*lr = _-"e**_Rem ;

!
Re'*_-- ], Remz -_-.

(8-6-32)

The continuity equation can be written in the form

ReD= 4H Re*'*i Jr Rem (Int-4},Z), (8-6-33)

where we have set Re** Re**= .. Then, from Eqs. (8-6-32) and (8-6-33) we get
l

! ]0,25 0.0128b=[}t Reo' "_-eZ Pr'," [

r-'+,,)]+_.7,

4H

(8-6-34)

Taking Eq. (8-4-21) into account we get the equation
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FIG. 8.30. Effect of injection on the temperature

of a porous wall. Curve calculated by {8-6-35);
points represent the experiments of [252].

X {bzcrit _ _ bicrit -f_i_-_-_t-ar- I _1 ) j ,
_S-6-35)

where k-- /
-- e, --1.

For known • and bicri t as a function of ¢i we get an equation in the desired param-

eter 00. The equation is solved graphically or by the method of successive approxima-
tion.

The results of calculating the mean wall temperature of a porous pipe by the pro-
posed method are compared in Fig. 8.30 with the experiments of Yuan and Barazotti

[252]. It is simpler to calculate by the graphs of Figs. 8.14 and 8.25.
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8.7. Gas Flow in a Long Pipe with Porous Walls

Formula (5-2-1) can be used to calculate hydrodynamics and heat transfer for a

gas flow in long pipes. In this case, a one-dimensional model of the gas flow can be
used to obtain preliminary results, and the influence of the cross flow of material at

the walls of the pipe will be taken into account directly in the momentum equation and
indirectly by the laws of friction and heat transfer.

As an example let us consider a flow of gas with constant physical properties in a

long cylindrical pipe with gas sucked through the walls at a constant rate. A diagram
of this problem is shown in Fig. 8.31.

'R

. , 1w

1

}
I

FIG. 8.31. Diagram of gas flow in
a pipe with permeable walls.

The momentum equation for a one-dimensional model is written as

dP 4 c. [2",b- ZJL;'], (S-7-1)
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_o

_=2_R dR
R_ is the nonuniformity coefficient, which in what follows will

wherea= 4 [i° ]'
m2nR dR

be taken equal to 1, b_--- m---_--- is the permeability parameter, and is the mean flow
_ Cfe

velocity.

From the continuity equation it follows that

_, ) w,Dm= I--,_- --_Z-,_ (8-7 -2)

where _2 is the gas velocity at the exit from the pipe.

Consequently,

• (8-7-3)
b---_ (I--tie)2, '
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where

_l , 4_ Ct, 4Lct°

Taking (5-2-6) and (8-7-3) into account, Eq. (8-7-1) can be written as

aP __4ip_2 c,. [l.5z (I -- rz) -- 0,0625z"-V

.- (1 -- rz)' l,

where z = r/z, l-_ x/D.

8 20

0

Distance from inlet, cm
£7 L'g ,'._ I_ 22'2

,.Losses at inlet
_:" I _ '

i Ji:

: : \:,,j

I \

1

4
, t

i°_x. 4I °

FIG. 8.32. Pressure variation over the length

of a pipe with permeable walls for various
suction intensities. Curves calculated by

(8-7-5); the points correspond to the experi-

ments of Wallis [242]: o--w2/w 1 = 0.68; x--
0.45; +--0.231; e--0.

8-7 -4)
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After integrating we get

P-- P*- = z (I ,Sz -- 0,0625z: -- I)

+ x'r (.I -- 0,75z)-- r'__.
(s-7-5)

The results of calculating by Eq. (8-7-5) are compared in Fig. 8.32 with the
experiments of Wallis [242]. As follows from Fig. 8.32, the proposed calculation

method to more complex compressed gas-flow conditions in a long porous pipe with
considerable non-isothermicity. In this case it is necessary to take into account the
effect of compressibility and non-isothermicity on the function • in accordance with
the formulas, of (5-4-6). The problem is solved by the methods of numerical or graphic
integration.
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CHAPTER 9

EFFECTIVENESS OF GAS SCREENS

9.1. Effectiveness of a Gas Screen at a Flat Wall under Quasi-Isothermal Conditions

The method of heat shielding with gas screens is widely used in modern engineer-

ing practice. Arrangements of basic gas screen design variations are illustrated in
Fig. 9.1. Other combinations of these variations are also possible. For example,
film cooling, which is widely used in liquid-fuel rocket engines, is combined with the
usual wall cooling. The flow-through section of a solid-fuel rocket engine is usually
made in sectional form with different thermal-isolation coverings, and in this case the

gas screen is dispersed over the surface by the lateral flux of matter.

The basic parameter defining the intensity of the heat transfer in the presence of

a gas screen is the so-called gas-screen effectiveness

io -- iW /_-1-1_@---
io -- _wt

where i 0 is the total enthalpy of the undisturbed flow, iw the enthalpy at the thermally-

insulated wall, and i is the enthalpy at the wall in the initial section.
Wl

f  0r,

_._.rt --

FIG. 9.I. Diagrams of principal

versions of the gas screen.

Thus the effectiveness of the gas screen determines the temperature of the

thermally-insulated wall with a screen. As will be shown later, this parameter is
also needed for calculations of heat transfer if a screen is present.

/25___3

/254

ro _ re

FIG. 9.2. Diagram of a thermal
screen.
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Considera longitudinal flow of an incompressiblefluid with constantphysical
properties arounda flat, thermally-insulated plate (Fig. 9.2). A section of lengthx,
is cooled, andthe temperature of the wall in sectionx, is Twl. In the region x>x: the

wall is thermally-insulated and the wall temperature varies along the plate, approach-

ing the temperature of the incoming flow. Radiative heat exchange will be ig-aored.

The energy equation for the region x>xt is written as

dRe**rdJ _ Re**rATd(aT)a_-_0. (9-1-2)

Integrating from _, to _ we obtain

Re "*r_7 = _e "*r/_ T , .

We introduce the thermal screen effectiveness parameter and find

(9-1-3)

where Re**
T1

aT l_e°*rl
_" (9-1-4)_ -- _"r '

is Reynolds number in section x 1.

It is obvious that Eq. ¢9-1-4) will also be valid for a more general ease, if the

total enthalpy is introduced in place of the temperature. In the section x<x,, with
Pr = I, the conditions

8r_8; b**r_-6**. (9-1-5)

are satisfied.

In the region x>x, the similarity of the dynamic- and thermal boundary layers

breaks down, since the boundary conditions at the surface of the plate are changed.
For the heat-insulated portion we can write

e}T
with g=O q=O, -_-y ---0: /

¢)r
with g=_t q_---O, "--_-y.-_-0. f

(9-1-6)

Temperature equalization occurs within the boundary layer only because of turbu-
lent mixing and the intake of gas from the outer flow. In this case the most intense

mixing takes place near the wall, where the derivative av.'x/Oy is maximum. As a re-
sult, the temperature profile is distorted in such a way that the region with c)T/Oy._O

grows continuously--i, e. the range with T = T w increases. Simultaneously the tem-

perature in the boundary layer approaches To, due to the leakage of gas from the outer
flow, i.e. with

x-"_oo TL--+Tw-"+To. (9-1-7)
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The energy-loss thickness, with constant physical properties, is defined by the
formula

With x--_, condition (9-1-7) corresponds to the limiting value of the energy-
loss thictmess

(9-1-8)

This maximum possible energy-loss thickmess corresponds to that temperature

distribution with which the gas temperature in the main part of the boundary layer is
close to the wall temperature.

Adopting ®-- % = E'17for the conditions being considered, we have, for the region

X_ X 1

_*r = _-**= 0,097.

At the boundary layer separation point, due to the action of the longitudinal pres-
sure gradient, n = 1/2, but nr_'[7, and then b"T----0.097 and 6"--0.16.

The limits of the quantity _**r, according to (9-1-8), are

with [ = 0 _-"*rmax--- 0,875;

with _ = [,p _-*'rmax = 0,7. / /9-i-9)

Thus, with any pressure gradient, the relative energy-loss thickness on an imper-
meable, thermally-insulated surface with x----,-_ becomes close to unity. This result

is confirmed qualitatively by the measurements presented in the paper by Nichiwaki,
Hirata and Tsuchida [187].

According to these measurements b**rmax/b**r,,= 6, and the limiting value of this
ratio is 9.

For the thermal screen depicted in Fig. 9.2, for a fluid with constant physical

parameters and Pr ~ 1, we can assume that br_6 over the entire length of the plate;
since with x>x, the "scouring" of the thermal boundary layer should be limited to a

region where o_x/Oy_O, i.e. the thickness of the dynamic boundary layer.

Then Eq. (9-1-4) is written in the form

(9-1-10)

where [J=b**r/b** is a coefficient accounting for the deformation of the temperature
field.

/25____7
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With x--_x,, _---_1, and with x----_oo, _--_l_ma x.

t r

t

i___
1.f t8

FIG. 9.3. Effectiveness of a thermal

gas screen. 1--calculated from

(9-1-14); 2--computed as per Seban
[214]; 3--computed as per Rubesin

[205]; 4--test data of Reynolds et al
[199].

In the region x>x,, with quasi-siothermal conditions, the dynamic boundary layer
is. developed independently of the thermal boundary layer. From the integral momen-
tum ratio we have

(,-,-,,I
Accordingly, with x _

O- ' f_',V"
am------_ k-_- j . t9-1-12)

Taking into account the momentum equation and the conditions ReT_ = Re*t and
/3 = 1, with x = x 1 we obtain

/254

( )'"_1,25 _¢ -- X, • e
@= 1 +.max _, (9-1-13)

According to (9-1-8), for the conditions being considered, /3 = 9, and then
max

(9-1-14)

Figure 9.3 presents a comparison of the calculations made with (9-1-14) and the
test results of Reynolds, Kays and Kline [199].

As can be seen from the diagram, theory and experiment are in good agreement.

Formula (9-1-10), extended to the flow of a compressible gas, and taking Eq.
(7-2-14) for Re** into account, reduces to

where

, \ _o, ]°= [' +
'_ ,1¢I .i

_JP_
2arctg ,_,lo V'0.5r(K-- 1)

_=Yw.tT*w;

(9-1-15)

(9-1-16)



(9-i-17)

To estimate the influence of compressibility on flmax' we take p/p0=_*--($ *-1) ¢o2

and (,)=_'_. The computed values of flmax' with these relationships taken into account,
are given in Table 9.1.

Table 9.1. Values of fimax

function of M

as a

0r l 11_max 9 9,8 10,4 II,5 12

Thus the compressibility of the gas does not significantly affect flmax"

quently, in view of the fact that

Conse-

!

f_ \-l_-_ -Ro--,,=[-_(,,,+ ,j_,.R_.._.. j. j .

we have from 0-1-15)

_'._ _ -':_' ]-"' (9-1-18)O=[l+ max" _,

This formula is derived on the assumption that the parameter _ = Tw l/T*w, i.e.,

with maximum possible influence of non-isothermicity. Thus the effect of gas com-

pressibility on the effectiveness of the gas screen, with the assumptions adopted,

appears in the coefficient flmax"

-- T _/_1 "-* ( _ +1 "',With z_o_, T w- w" 4 •

Cons equently

1

Taking (Uw/Uwl)m = 1, we have

,,_ ,_,_-,,_
4 J -7_, ]

I*1
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Thusthe effectivenessof the screen grows asthe intensity of cooling of the initial
section of the plate is increased.

For anaxisymmetric boundarylayer, we havefrom the energyequation:

0_-- D---z-'Re"r' (9-1-19)
D Re'* r

In particular for flow around a cone

(a) WithM=0, flmax = 9,

05

; (9-1-20)

(b) With M = 3.5, flmax =10.9

O=== _=* [1 q- 19,7 {':¢-- x' "_]

DI

(9-1-21)
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Figure 9.4 presents a comparison of the results as computed from {9-1-20) and
(9-1-21) with the experimental data of F. H. Durgin [135]. The proposed method of

computing the gas-screen effectiveness can be extended to the case of an arbitrary law
of change in velocity at the outer limit of the boundary layer. From Eq. (9-1-4),

taking (7-2-52) into account, we have, in the general case:

max

_v

_ =\ _..1 u(:- u,) e'_+ma_

'woo \_,,/ (i U,)-'_T-'a;V'L, -

and for the case of gas flow in a supersonic nozzle;

1

m+l

(9-1-22)
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max

--v

'F= ( _'' "_'""+'=" +',__ k-_-') =" -'---

,F® \ _... / /

Redo Dm+'

m+l

(9-1-23)
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FIG. 9.4. Effectiveness of thermal screen

at the surface of a cone in a supersonic
flow. 1--Calculated from (9-1-21); 2--

calculated from (9-1-20); Points--tests of

F. H. Durgiz_ [135].

where

• p

-- IWI

iw2; is the total enthalpy of the gas at the thermally-insulated wall; iwl is the total

enthalpy of the gas at the cooled wall in the section _l-

The parameter _---- iw:/i*w appearing in W®, is related to the screen effectiveness

by the formula

{= (9-1-24)

Equations (9-1-22) and (9-1-23) are solved for iii by successive approximations.

The magnitude of the coefficient flmax can be taken from Table 9.1 (first approxima-
tion).

9.2. Gas Screen Created by Injection of Gas Through a Porous Section

Let us derive the formula for the effectiveness of the gas screen created by in-

jection of gas through a permeable section of length x 1 (Fig. 9.5). Equation (8-4-20)
is written in the form

a (Re*',-_O __ l_ew (i*w -- i')
d#

From this, for the case i = const, we have
w

Re**,, = Rew, (1 + K,), (9-2-1)

where

Rew, -- _ ]w dx;
,1

iw, -- i'

K, _ - i. w- iw '

/26_.___2
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FIG. 9.5. Diagram of gas
screen with a poroussec-
tion.

For the caseM <<l andC =const.
P

rw, -- r'
K, -- __-_w ' •

Since 0-_ I + K,
l +K ' we have from (9-1-4)

Re**r
K-t-- 1 = (K, -}- 1) Re-_ '

or, in view of (9-2-1):

Re**r .

K -_ I = Re..w,

In the region 0 < x < xl, Re* T = Re**, and in the region x > x l, Re;

From the momentum equation we have

Re** [(1-}-m) B ] t= m+l i

where

(9-2-2)

(9-2-4)

With x _ oo, Re A x = Rex

Ret, = -_ (x -- x,).

>> Re*J, and

K -}- I -'* _max [ -Jr-/7l) B [_ex ]-
• Rew-----_ [(1 -_- ]

Takingn =1/7, B/2 =0.0128, m= 0.25 and fimax
formula

K_- 1 _0,33 Re°_'_
- l_ew,

For the entire region from x 1 to 0% we have

t

m+l

= 9, we obtain the limiting
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(9-2-5)

(9-2-6)
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FIG. 9.6. Effectiveness of the gas screen with a
a porous section. Straight line--calculated from
from (9-2-6); v, o, o, :--test data of Nichi-
waki et al [187]; +--data from V. P. Komarov
[51].

] - ' (9-2-7)
0.25 Reaz , o

0 = 1 + _ (_+ K,)'"

Figure 9.6 presents a comparison between the calculations using (9-2-6) and the
data of Nichiwaki, Hirata and Tsuchida [187] and V. P. Komarov [51]; Fig. 9.7 is a
comparison with the data of Goldstein et al [144].

For a flow of compressible gas, taking (9-1-15) into account, we have

i_1+ m

_max B 11+ m) Re.o
Oz= 1 + (!+K,),.,+,e_+,, , _p_,.p.,.+t

}.' -+'X f_,,. 13 o',+_e_

(9-2-8)

For the gas flow in a supersonic nozzle

II +m

t'max B (i + m) Reoo

0Z-_ 1-_ i+m(l+h,t)m+ t 2pro.,_ Rew_i_m+tOz
(9-2-9)
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FIG. 9.7. Gas screen effectiveness
with a porous section. Curve--cal-

culated from (9-2-7); experimental
points--from the paper by Goldstein
et al [144].

Equations (9-2-8) and (9-2-9) are solved for @z by successive approximations.
For a preliminary estimate we can use the formula

I _" z 1-_

K--!f_,\°,," t"

X!

e=_- 1+ (1"_ x _' =s D°l'25

(9-2-10)

and for the supersonic nozzle

01 S_, 1 + (i +K).., "--'._5'_, "= IFm(b)'-'dzgcWi u ."
(9-2-11)

For the flow around a flat plate we have

o.25re,_ ( _', V"'/-"'.
0={1 +_,_MI(_ +_,)r_;,l'." _,--_-_-_/I

where ]_e"'==P*W* (:¢-- :¢')"1_.'Ilrh =(_ 1)';

(9-2-12)

,D _iI

L14

o2

Io

&

FIG. 9.8. Effectiveness of a gas
screen with supersonic flow. 1-
Calculated from (9-2-13) for M

= 2.9; 2--calculated from (9-2-7)

(M --* 0); test points from the
paper by Goldstein et al [256].

/265

215



IF M -_- ---= =:--_- .

Figure 9.8 gives a comparison between formula (9-2-12) and the data of Gold-
stein et al [256]. The tests were made with T /T* = 1.0. Then formula (9-2-12) is
conveniently written as wt w

I _Ml_e"" ( _°°)* _' -,,.a0= 1-[-0,25 ltl+^.)re.l,._. \--_-j' I ' (9-2-13)

where Re = jwxl/u s, u is the coefficient of dynamic viscosity of the iniected gas at
T'. s s

As is evident from the figure, the experiments and relationship (9-2-13) are in

good agreement. It is interesting to note that the screen effectiveness improves con-

siderably with an increase in M-number.
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9.3. Gas Screen Created by the Injection of Cooled Gas Through a Slot

The gas is injected through a slot of height s with velocity w t at temperature T t
(Fig. 9.9). The physical properties of the main and injected gases are taken to be
alike and constant.

FIG. 9.9. Diagram of a slot

gas-screen.

In the section 0<x<x, the plate is washed only by the injected gas, and the plate

=T =T 2.temperature is equal to the temperature of the injected gas, i.e. T w wt

Boundary layer heating due to the mixing of the main and injected flows begins to set

in with the section x _ x t.

With x--_oo the dynamic boundary layer no longer depends on conditions in section

xl, and with n = 1/7

&'"z-._-- 0.036x I_e_-°'2. (9-3-1)

We can write the following balance relationships for the xl-section:

_ C p pwTdy = C pip,w,T,s-_ C_powoT, (h -- s);
(9-3-2)
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_ _dy_ p,w,s _- powo (h -- s).
(9-3-3)

For the conditions being considered (p,-_ ,%.CFI =C_), we have

_e
(9-3-4)

Substituting (9-3-4) and (9-3-1) into (9-1-10), we obtain

27,8_ O,2/w,s \0.8
(9-3-5)

-- WIS/Vswhere Re s

With flmax = 9 we have

0,.._-- 3.1 Re°'_ ( _v,___s_°'
, \ Wo_ ]

(9-3-6)

For the region x, _x _oo we find:

O_[ 1_0'25 Re--°''_5• :'° (x-- x') 1-"'"w,s
(9-3-7)

O= I in the region 0<x<x,.

Using the -known relationships for a free turbulent jet [1], to a first approximation

we can take, for w_ < w 0

• (--T_ 0.107 _- 0.037 (9-3-8)

In some instances the section x 1 can be neglected--i, e. we can get x--x,_x, and
thereby create some margin for the gas screen effectiveness. Then we obtain a simple
computational formula

O= (1 -_ 0,25_e, "_ :'°xu.,s_'l""' (9-3-9)

A comparison of the gas-screen effectiveness computed from (9-3-6) with the tests

of Papell and Trout [193], Hartnett, Birkebak and Eckert [152] and Seban [214,215] is

given in Fig. 9.10.

The proposed method can be extended to a flow of compressible gas along a flat

p._,.s and
wall. In this case Re°*r_--_ i,---7

[ /O_ l -I.-0,016_""' _]F°°l_ea' °'
(Re.,roo),.2, ' (9-3-10)
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FIG. 9. 10. Effectiveness of a slot

gas-screen. Curve--computed
from (9-3-6); o--tests of Papell
and Trout [193] ; V --tests by

Sevan [214, 215].

where k%, is found from (4-1-2). For the general case of flow over a curvilinear
surface we have

f_,,,. _,..,, _.. A-- 1-'"

o.o,6_,.,,.._'_J_R,...)',,'*'"J"'""'' ('-v'_'¢-' '_']

and for the gas flow in a supersonic nozzle:

(9-3-11)

[ i ]:"O' OI6[l"'°_Jti \_] Reoo

O_ 1 q- (Reo.l',"b'.'-' _M (_)''-'dz (9-3-12)
.ll

It should be noted that all formulas obtained for the gas-screen effectiveness can
also be extended to the injection of a foreign gas. In this case the gas-screen effec-

tiveness is defined by way of the enthalpy of the gas

O__-_--i,- i*w {9-3-13)
io --" iw,

With Sc = 1 similarity should exist between the distributions of enthalpy and total
concentration of the injected gas, and hence

Ol_ ieG'i°w = to-- ¢'W (9-3-14)
ie _ iwl Co _ Cw , °"

From this

c*w ==c0--Oi (co--cw,), (9-3-15)

where c* is the concentration of the injected component at the thermally-Lnsultated
w

wall; Cwt is the concentration of the injected component at the wall in section x I.

The specific heat of a binary mixture of gases at the wall can be expressed as

C*_,, = Cpc*_ -F Cpo (I--c*,,,) = C_-F (Cp, --C_ c%,. (9-3-16)
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From (9-3-13)wehave

Cpo'r o - C*rwTtw

Oi_ Cpor,_Crw,rw ' (9-3-17)

From this, taking (9-3-16) into account, we have

r_ -- T% O, (C_T. -- Cew,rw,) -- (Cvw I- C_j) r.c" w
Ot -- r.- rw, -- [C_ + (Cvw I -- Cpo) C'w] (/',- rw,) "

In the case of injection of a foreig-a gas through a tangential slot, c o = 0, c

Twl = T s, Cpw _ = C and from (9-3-18) we have wlps'

el = @LC_
O_ (Cp_ -- Cvo) q- Cr,

The integral energy relationship (2-4-7) for the region x>x,, where qw
written as (qv = 0, Jw = 0)

(9-3-18)

=1,

From this

(9-3-19)

=0, is

fl (R¢",,_i) __---0. (9-3-20)d$

O[ : Re'% Re**,
Re", -- ? R-R-__-' (9-3-21)
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k--I
in which case Oi-- ,'w..--i'w Re**-- p.w.o" Re**/, =P'*_'a'"' i*w. = I + r T/_ ;

i'w°e -- tW' ' _*e ' P'oo ' i---'_

i_v is the enthalpy of the gas at a thermally-insulated wall.

Taking into account Eq. (7-2-15), we obtain a formula for the gas-screen effec-
tiveness in the general case:

O, = I -Jr T (_e",,)'+'

X,

where

V=[ 2arctg. M.l/O.5r(k--l) ]')M. Vo '

in which

=iw/i*w.

The parameter Re.** is established as a function of the mode of setting up the gas
screen: is
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FIG. 9.11. Screen effectiveness with injection of

a foreign gas. Curve--computed from formula

(9-3-15) with _" = 1.

Symbol Injected gas Reference Type of street

• ] Helium [ISl Porous

[] [ Helium 11431 section

0 IlSlHelium

Helium

Hydrogen

_eon-12
1.._1

t Slot

(a) cooled portion

Re**_, = [-_-(_-t--1)_, ( _w'_''''P,,j Re,,, ]o._;

(b) porous section

Re'_, -- Re.w,(1 -J- K,);

(c) injection of gas through slot

Reeel, _ p,ze,s
P_,

For the subsonic gas-flow region, Eq. (9-3-22), for fl = 9, is written as

[ ]t _ \ o,nm
_,-- , + o,_s "" • _) ,_

(9-3-23)

(9-3-24)

(9-3-25)

(9-3-26)
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An accurate solution of the problem can be had by the method of successive

approximations, since the function _' depends on 0_. In addition, we must obtain an

expression for the function • in the presence of a gas-screen, which will be done in
Section 9.7.

However, for practical calculations we can take, as a first approximation, • = _I'l,

and obtain the limiting value of gas-screen effectiveness under the conditions being
considered.

Figure 9.11 presents a comparison between formula (9-3-15) and the test data of
E. P. Volchkov and E. I. Sinaiko [15], Goldstein et al [143] and Burus and Stollery

[257], in which the concentration of injected gas was changed at the wall with different
methods of setting up the gas screen. The curve corresponds to the calculation of Oi

from Eq. (9-3-26), assuming 'Y:_ I. As can be seen from the diagram, satisfactory
agreement exists between computed and experimental data. Better correlation can be
attained if the deviation of • from I is taken into account in (9-3-26).
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9.4. Multi-Slot Injection of Cooling Gas

In many cases of practical importance, a mult-gas screen must be used. Possi-

ble arrangements of multi-slot- and grating-injection are shown in Fig. 9.12.

"7. Y

} ) ) )1
} ) ) )

FIG. 9.12. Diagrams of multi-slot (a)

and grating {b) cooling.

Consider a uniform turbulent boundary layer of gas with constant physical prop-

erties in a given temperature interval. Cooling gas is injected through a series of

slots of width $1, S_,. ... Sn, corresponding to temperatures of T 1, T2, ..., Tn and

velocities wt, w_,o ... , w n. Each slot has a zone xl, x_,...., Xn, within which the

wall temperature does not change and is equal to the injected gas temperature. Heat
is not transferred through the wall, and its temperature is an untmown quantity that
varies with the coordinate x. The wall temperature beyond the first slot can be found

from (9-3-7). The problem is to find the wall temperature beyond the following slots.
/273

The energy-loss thiclmess in the section of the second slot is-

°**r2 rn=sz -}- T, -- T'wz •"-- To-- T= (_**r),, (9-4-1)
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where m2 = P,w2/PoWo;

0o

/(_"r),= _ ( r.-r'_,-J _y

is the energy-loss thickness in the section above the second slot.

equation:

T, -- Twz a**yl

T, -- T, (d**r)2

From the energy

(9-4-2)

where 6rt=mist is the energy-loss thickness in the section of the first slot.

With (9-4-2), we have from (9-4-1):

r. -- T, r. -- T,
_**r2 -_ maS* -_- Te_ 7t _**r, _---trt*sz _I- T, -- T_ nz_s,.

(9-4-3)

Hence

ro - TR - 1

_*'r, = m,s. + -rT--?-:. _''r,--' (9-4-4)

or

TI _ TR_ I

_r, _ ?ttnSn "_ T. -- 1".. Inn_ iS, _ I

T, -- 7.., T, -- T,
+ r,- r. m,,_,s._, + ... + r,- r. ra,s,.

(9-4-5)

From the integral momentum relationship (for m = 0.25 and B/2 = 0.0128) we have

ae •

a = _ = lI + O.O16z',:'l 0.'. (9-4-6)

where _. -_ x/;,**, _e °'2
• °

A comparison between (9-4-6) and the tests of Hartnett, Eckert and Birkebak [152]

and Seban and Back [216] is given in Fig. 9. 13.

The momentum-loss thickness in the section above the second slot is

a";). = [C"*+, n-- / _ "''"v.v,bL ,,_...) ]"'.

and the total momentum-loss thickness is

(9-4-7)

_'*. =. m,s, (t -- -._' ) -_ (_-'o),. (9-4-8)
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• 6"817 g J ,_ 6 8 1oo 200

FIG. 9.13. Change in momentum-
loss thickness over the length of a

plate with multi-slot injection.
Curve--calculated from (9-4-6);

• --data from Hartnett et al [152];
o. a. []--data from Seban and Back

[216].

Hence

w. J T_, ,J,. (9-4-9)

A first approximate analysis of the effec-
tiveness of thermal shielding can be taken as

In this case the gas-screen effectiveness
with multi-slot injection is calculated from the

formula for a single slot. The difference consists only in the determination of the ini-
tial parameters of the boundary layer, which are calculated in the cross section of the

n-th slot, taking into account the injection of coolant through all preceding slots in
accordance with (9-4-4) and (9-4-10).

In particular, for the power-law profile with n = 1/7 we obtain

@-__ Re"rXRer_*"'{R--_-_ --I J \Re---_x] , (9-4-11)

where

Re"r, = [Re_2'_ + 0,016 I_e_ I'.';

Re'%= [Re_ '''_ + 0,016 I?%,.,,l°. ';

RerA, = [0,016 ReA_]'.' = Re"
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For the case

we have

Bj ---I_l_... _ I_a;

t.=r, .... = r.;

$1 _ $a ..... Sn

_e'tj,. =/l/If, S; _w. = t//}'_ (| -- W-_--).

Equality (9-4-11) reduces to

i {(i + 62,5K_,).._ [1e-- {1 .+. 0,016K) *.1°

( ]"" ,"+62,s l- "'_'"X -1 --1 I 'w, j

(9-4-12)

(9-4-13)
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FIG. 9.14. Generalization of test
data on the effectiveness of the

gas-screen with multi-slot injec-
tion. 1--calculated from (9-4-14);

2--computed from (9-4-15); that

data points with 0 < Ws/W 0 < 1.33

from the paper by Chin et a___l[144];
number of slots: _--1; o--2, +--3;
_--4; x--5; A--6.

where

0=
T,-- T. "

ReA_,. Re_ .

Equation (9-4-13), as shown by E. P. Volchkov [15], can be satisfactorily

approximated by the formula

0--" [(! _ K+ 0,14362'5_/''-- 1 ]'" (1- 0,016K)-'."

with Ws/W 0 << 1 and

62.s'_,.,_ ]..,o=[(, , (,

(9-4-14)

(9-4-15)

with Ws/W 0 = 1.

Figure 9.14 presents a comparison between the experimental data of Chin, Skiwen
and Burgraff [114] and the computed results using (9-4-14) and (9-4-15). Those modes
were used in the analysis for which the energy-loss thickness due to the injection some-
what exceeded the initial energy-loss thickness due to wall cooling up to the first slot.

Reference [114] also contains measurements of the gas-screen effectiveness with the

injection of a coolant through a grid-like panel (see Fig. 9.15).

Under these conditions the parameter K is found from the formula

K" -= (- _' )'"'--G ReA-' (9-4-16)

where G is the flow-rate of coolant per unit width of surface.

As can be seen from Fig. 9.16, the calculated curves encompass the entire range

of experimental points, even in such a complex situation.

224

/276

/27____7



$ -" :'" ,o

I

i

O

!

4 5 8_ g $ _1 6 8 ,'0 2 3 6

FIG. 9.15. Effectiveness of gas-screen with the in-
jection of a coolant through a tangential grid. 1-
calculated from (9-4-14) ; 2--calculated from (9-4-15)
Points- test data from Chin et al [114]; number of
rows of slots. _. --2; •--4; +--6; 4--8; x--10; A--20.

9. 5. Effectiveness of Gas-Screen at a Rough Wall

In a paper by E. P. Volchkov and V. Ya. Levchenko [12] it was shown that the

proposed method of calculating the gas screen can be successfully extended to a rough
surface. In this case, formula (9-3-9) is written as

ReAx 1-o.zO--- ] --J-0,25A Re_._| ; (9-5-1)

4a_A
A-'- 1 --]- (1 +m') (a_ + 2A), ' (9-5-2)

where A is the roughness height.

Figure 9. 16 presents a comparison between the test data of E. P. Volchkov and
V. Ya. Levchenko [12] and formula (9-5-1). The tests were made on a tubular surface
in the range 0.23 < m < 1.0 and various slot heights (2 < s < 13 mm).

In the case of a fine-grain surface, for the region in which the coefficient of fric-
tion can be assumed to be constant, we have

Substituting (9-5-3) into (9-1-4), we obtain

(9-5-4)

Strictly speaking, the coefficient of friction on a rough plate varies over the length,
since the boundary layer thickness changes. If we use Schlichtingts formula

[ ,.Cr -- 2,87+1,581g -', (9-5-5)
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we find

(9-5-6)

Hence

0_ "0

o

(9-5-7)

Comparison of formulas (9-3-I0) and (9-5-7) shows that the effectiveness of the gas
screen is less on a rough surface than on a smooth wall.

2

I "j _._-

, I L,$

$ 85' 2 4 6 8f0 g 4 6 8_

FIG. 9.16. Gas screen effectiveness at a rough
surface. Curve--calculated from (9-5-1):
Points--tests of E. P. Volchkov and V. Ya.

Levchenko [12]; height of roughness in all tests
A = 13 ram; height of slot, ram: o--13, A--10,
_'--6.5,e--3.5, x--2.

9.6. Convective Heat Transfer with a Gas Screen

Usually the gas screen is used in conjunction with surface cooling and one must be
able to determine the local coefficients of heat transfer for these conditions. The inte-

gral energy relationship for the region x > x 1 can be written as

d qw

d'Y[(Tw--7%,)_'r+ (r-_--7.)_"r.|--gc,_.=.' (9-6-i)

where

l

a°'r = _ rw-- r-_- dy;
o

/27._.._9

226



M M z,.q _t. _r _s ,_F M

FIG. 9.17. Law of heat transfer in

the presence of a gas screen. Line--
calculated from (9-6-6); Points--

tests of V. P. Komarov [51] with

Re T and St 0 established from (9-6-2)

and (9-6-5).

0

(9-6-2)

Here T' is the temperature at a given point at the boundary layer at the thermally-
insulated surface; T is the temperature of the surface.

W

In accordance with Eq. (9-1-2)

d •

litw- r.) = o. (9-6-3)

Hence

dRe*'r Re'*r d(hT*) ___eLSt, ' (9-6-4)

where

m qeT .

St,-- _:_-_._r-" _T° = Tw -- T'w.
(9-6-5)

Thus the integral energy relations for the heat-transfer surface, with a gas screen,
keeps its usual form if AT _ = T --T* is substi_ted in place of AT.

W W

We assume that the law of heat transfer in the form (2-6-4) is also valid for the

conditions being considered, if 6**r is defined by (9-6-2) and St 0 by (9-6-5), i.e.

St, = T (9-6-6)

Figure 9. 17 shows a comparison of (9-6-6) with the test data of V. P. Komarov

[51].

Figure 9. 18 gives the distribution of temperature over the boundary layer cross
section at a plate, with a step input of heat, as obtained by E. P. Volchkov [15]. The

ratio of the heat fluxes at the first and second steps came to 0.3 _< qwl/qw2 _< 7.0. As

can be seen from the diagram, the temperature profile in coordinates r--r'
rw-- 7*w

= _ (_r)is in agreement with the usual power-law relationship.
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FIG. 9.18. Distribution of temperature
over the cross section of the turbulent

boundary layer with a step supply of heat.

power-law ro-r =
x-o.Tlr,(v/_.*r)r/7; A--

treatment in variables _ = ! (rib'*r,);

B--treatment in variables r,.-r
TOw_Tw ----" 1(b,18"oTi);

Points--test date of E. P. Volchkov [15].

Symbols

•/,, [

I I 0 J • Inn Iqw=C°nst I qwl/qw2=6

I o.1 I o,= I 0.57 I o.T/

Figure 9.19 shows a comparison of the results of calculation using (9-6-6) with the
tests of E. P. Volchkov [15]. In Fig. 9. 19a the test data were generalized in the usual

way, and here, with qw/qw2 > 1 the test points deviated considerably from the calcula-

tions made with (9-6-6). On introducing the equilibrium wall temperature, all of the
test points fit relationship (9-6-6) (see Fig. 9.18b).

Figure 9.20 illustrates the test data of E. 1o. Volchkov and V. Ya. Levchenko [12]

on heat-transfer at a rough surface with a gas screen, as processed similarly. As
can be seen, the introduction of the "equilibrium" temperature allows generalizing the
heat-transfer data at a rough surface as well. It should be noted that without a gas
screen, at this same surface, the authors obtained the formula

Nuz=2,6. l O-3Rex, (9-6-7)

which is correct beginning with xl._>6.
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FIG. 9.19. Law of heat transfer with a
step input of heat. Straight line--calcu-
lated from (9-6-6); points-- tests of E. P.

Volchkov[15]; o--0.3 <q_l/q_2__-- <1;0--

3.1 < ____q_l/q_2< 6.7; a--computed with

AT = TwT 0 and 6**T according to {2-4-3);

b--computed with AT = Tw-T w and 6"* T

according to (9-6-2).

FIG. 9.20. Heat transfer at a rough
surface with a gas screen. 1--calcu-

=2.6 ×10-3Re 0.8.lated from Nu x x '

Points--data from E. P. Volchkov
and V. Ya. Levchenko [12]; e--
without screen; o--with screen

(Ws/W o < 1).

The integral of the energy Eq. (9-6-4), with (9-6-6) taken into account, has the
form

/283

I j!m FI) B

Re",-[._ r.r°--rWlTwt t '_Pr°"'

x.i

(9-6-8)
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Taking into account Eqs. (9-1-14), (9-2-7), (9-2-10), we find Re* T from (9-6-8)

and the local values of St from (9-6-6).

9.7. Effectiveness of the Gas Screen and Heat Transfer on Chemically Reacting

Surfaces with Tangential Injection of an Inert Gas into the Boundary Layer

As has been shown in Chapter 8 in the calculations of heat- and mass-transfer
processes on chemically reacting surfaces, the non-isothermicity exerts a substan-
tial effect on the coefficients of friction, heat- and mass transfer. It was demonstrated

in Section 9.6 that the power-law profile of the dimensionless temperatures is pre-
served with the introduction of the equilibrium temperature under quasi-isothermal

conditions. It may be assumed that the relationship

•- (9-7-1)

will continue to hold under even substantially non-isothermal conditions. Here i is the

total enthalpy of the gas at a given point, i' is the total enthalpy of the gas at the given

point with the development of a gas screen around the thermally-insulated wall (qw = 0).

With barrier cooling of the wall, when _i/ay) w = 0, a most intense turbulent mix-

ing takes place in the near-wall region, where the velocity derivative is maximum.
Therefore enthalpy profile distortions take place in such a way that the region in which
(_i/0y) = 0 grows as the boundary layer develops.

Thus as x---_oo, i'----_'*cT and in this region equation (9-7-1) takes the form

0----- i--lw
i*w -- iw --o. (9-7-2)

With this relationship, the expression for qZT from (2-1-12) reduces to the usual
form

! I

r"
W _ h

(9-7-3)

It should be remembered that the Stanton number appearing in g' is defined as

St -_ q_
Powe(i'w-- iw)'

where i w is the enthalpy of the gas or a thermally-insulated wall with a screen present.

As l_e----_oo, _r---*l and we have

(9-7-4)
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The right-hand side describes the "standard" boundary layer and represents a
constant Z, independent of perturbing factors. For "standard" conditions _= l, _=_0, p= !
and Z = 1.

Thus the limiting law of heat transfer for the non-isothermal boundary layer of a
compressible gas, with a gas screen, on a permeable surface, has the form

(i )= (9-7-5)

The approximation of the heat flux profile over the boundary layer cross section,

with a gas screen on the permeable surface is retained in the form

_----¢-_ l -]- b',l), (9-7-6)
q,

where b 1 = jw/p0wSt is the wall permeability parameter in the presence of a gas screen;

here Jw is the transverse flux of matter at the wall. The gas density is related to the

parameter O by the known relationship (for M < 1) /285

p M'w r, [¢,+ (i --%_ ¢]
p. 2,1. r'w [4, + (1-- 4,) 01[÷, + 0 -- 4_) _] (9-7-7)

where

lw . Cpw _ M*w

For gases of like valency

p M'w /'° !
"_=_ Tr'_w 4, + (! --*,)O" (9-7-8)

Here M* and T* are the molecular weight and the temperature of the gas mixture
W W

at the wall in the absence of heat- and mass-transfer (qw = 0 and Jw = 0).

Substituting (9-7-6) and (9-7-8) into Eq. (9-7-5), we obtain the limiting laws of
heat transfer for a reacting wall in the presence of a gas screen:

(a) With _, < 1

M'w 7, 4 [in If(l--C,) (I -t-b*,) + lfb'_, ]';

m'w.r. J [ l+
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(b) With +, > 1

qr ___"4fow To 4
_f, T"w b, G,t -- l)

,>,+o> ,'X
b', r b',+,J

(9-7-11)

M*w 7, ! I_cd.t_ .t,I I T°w _, I arccos 2-- +,'_I_ +--,/ -
(9-7-12)

For an impermeable wall:

Vl_ M'w ._ ( 2 )t. (9-7-13),_. r;_,, t+.+l

Thus the limiting laws (9-7-9)-.(9-7-13) differ from those obtained earlier by the
of a factor (Mw/M 0) (T0/T w) which also accounts for the effect of the gaspresence

screen on the relative laws of heat- and mass transfer and on the boundary layer dis-

placement parameters. The values of the parameters ¢1, M; /M 0 and T0/T; are
found from the formula derived earlier

/286

whe re

+0,25
_e 8 '

i.- i*w (¢,),- (;,)'_
i. -- i. (_l). -- (<h),

(9-7-14)

With injection of an inert gas through a slot

(_o)*_ -- (_o)o(l --0,). (9-7-15)

The integral diffusion relationship at a reacting wall, with a gas screen, can be
written in analogy with the energy equation in the following form

where
A_d.t

i_/wReL _. St ° Rev
Tilo

P,
6

-- p.i,---_. 1,'.,1_--(_,)'w
0

_= (7'_),,,- (7,)%:

• =x/L;

i_eL __ p,_.L_o

(9-7-16)

Here c. is the concentration of the i-th component at a given point in the boundary

layer at a nlon-reacting wall.
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Taking the diffusion equationinto accountas written for the wall conditions

\_/w'

we obtain

(9-7-17)

jf_t _ .

Sto _ (9-7-18)
P'_'* ff'w -- _*'wJ "

We introduce the diffusion parameter of the permeability

(9-7-25)

b*,-- iw __ _,w--e,w (9-7-19)
%_,StD J,w

Let us consider the burning of a graphite surface, and, by determining b_ in terms

of the concentration of carbon (_i)w = 0, Jiw = Jw' we find

(_v.)w b',
b*, _- ! _ (ec)w. or (C'c)w = | _--_. (9-7-20)

*

We establish b 1 through the oxygen concentration Jiw = 0 and obtain

ff.)'w I. (9-7-21)

For the diffusion combustion region, where the reaction C + O --*CO takes place,
we have

(_C_w 12 16= _ (_co)w: (C"o)w= _ (_co)w: (9-7-22)

Here (_co)w is the concentration of CO at the wall.

From Eqs. (9-7-20), (9-7-22), taking (9-7-15) into account, we find the perme-

ability parameter at the burning graphite surface in the presence of an inert gas
screen:

b*, _ _(_c)w(_o)*w : -X-3(_o)* (1 -- O,). (9-7-23)

The integral equation of diffusion is conveniently written as

dReD* .___R_D_,_ (-_,_)--St. qr (l _ b*_) l_e L. (9-7-24)d_ d_

In analogy with heat-transfer we find the law of mass transfer as

St, -----_ . _
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We integrate and find /288

J$

I

× • (x + b'J tS"*'dx] _r-

(9-7-26)

The intensity of burning of the graphite surface is defined by the formula

B Re*.-,,,Sc_. [pw'_"_ (9-7-27)

where ¢ is found from (9-7-11).

In the experimental determination of the law of mass transfer the local values of

Re* D are found, in analogy with the thermal layer, from the formula

ReD*-_ pob*,

,¢

(! -I- b*,) _ Jcd._ (9-7-28)
0

and the Stanton number from

Sta --_ /c (9-7-29)
"(o_ob'n

If the change in gas parameters over the length is ignored in Eq. (9-7-26), for-

mula (9-7-27) reduces to

(p_V_ e.t

]c =b*, St----- b*,-0,0297_e_ -°'2 Sc-°.'_*" \-_.1 • (9-7-30)
_lwe

Figure 9.21 shows a comparison of the experimental data of E. P. Volchkov and
E. I. Sinaiko [16] on the burning of a graphite surface in an air flow; without screen and

with a nitrogen screen, with the computed results using {9-7-30). The agreement of

the proposal method of computation with the test data is quite good. As can be seen
from the curves, the combustion intensity is considerably reduced with the presence of

a screen.

Figure 9.22 shows the generalized test data [16] on the intensity of burning of a

graphite surface without a screen and with nitrogen and argon injections. The data
were developed in the form of the law of mass transfer, taking into account (9-7-28)

and (9-7-29). The computational relationships were set up from the formula
/289

(9-7-31)

for ¢1 =7, 0 and 1.

234



_ _L_e_e - 0:
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FIG. 9.21. Burning of a graphite duct in an air flow
with a nitrogen screen. Curves computed from

(9-7-30): 1--for ¢1 = 7; 2--for ¢1 = 9; 3- for ¢1 = 10.
Points from the tests of E. P. Volchkov et al [16].

Symbols Type" of +1,_kg_m2 mc) ' T.W,. kg]m2.sec tw,
graphite

O

O
L]

PPG

V-I

PROG- 2400
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PPG
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iiS
150
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O

0
SO
47.1
80.6

1660

leOOJ

4 Re_
Io_ 2 _ 6 8 I0s 2

FIG. 9.22. Generalized test data on the burning of a
graphite duct with nitrogen and argon screens.

Straight line--calculated from (9-7-31): 1--¢t = 7;
2--¢1 = 9; 3--¢t = 1: Points--test data of E. P.
Volchkov et al [16].

Gas "
Nitrogen _ Argon

Symbols

T_

1,m,

rw.I_

<>I•lelololo

010 I-_--i,-_-.,i-_._I_
I, 3i,o3¸
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As canbe seenfrom Fig. 9.22, the calculationsandthe test dataagreesatisfac-
torily. For the conditionsbeingconsidered, the non-isothermicity reducesthe inten-
sity of mass-transfer by a factor of about3.

Fig-ure9.23 represents thetest results [16] on the burning of graphite in a flow of
air with the injection of helium.

&

50 /00 ;50 mm

FIG. 9.23. Burning of a graphite duct with a helium

screen. Curves-calculated from (9-7-30): Points--
tests of E. P. Volchkov et al [16].

Symbols T_. kg/(m2. _,-) I i, %. kg/(m2.sec ] rw.'K

A t" I s,. 1 '"

As the calculations show, under the conditions of the tests by E. P. Volchkov and
E. I. Sinaiko the maximum effect of a transverse flow of matter on the law of mass-

transfer did not exceed 10%--i. e. within the limits of experimental accuracy. On the

other hand, the effect of the non-isothermicity, as already noted, was two orders

larger. Taking this circumstance into account we can ignore the effect of a transverse
flow of matter on the law of mass transfer, and then V----W,=Sto/St_.

Figure 9.24 shows all of the test data of reference [16] represented as the function

_'t"-/Lr,_l w T,
(9-7-32)

Here also are presented the test data from the paper by Perkins and Worsoe-
Schmidt [194], reworked using the formulas of Chapter 8. As can be seen from the

plot, the experimental values and those obtained using the proposed method are in
satisfactory agreement.

There is no difficulty in principle in extending the proposed method to a flow of

compressible dissociated gas, to the axisymmetric boundary layer, to the internal
problem, etc. With the presence of a flame front in the boundary layer, the relative

laws of heat- and mass transfer are derived using the formulas of Chapter 4.
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0
2 ,_ 4 $ 6 7

FIG. 9.24. Generalized test data on the

burning of a graphite duct with a screen of

different gases. The quantity

is plotted on the abscissa. Curve--computed

from (9-7-13): o--tests made by Perkins

and Worsoe-Schmidt [144]; +, o, Q, 4, _--
tests by E. P. Volchkov et al [16].

9.8. Turbulent Wall Jet with w s/w 0 >> 1

In the preceding sections we have considered the characteristics of a wall jet,

essentially with w /w 0 << 1. The effectiveness of a turbulent jet propagating over a
s

fiat wall with a stationary ambient gas is a matter of practical interest. A diagram

of this problem is shown in Fig. 9.25.

t,
1 I

FIG. 9.25. Diagram of a
turbulent wall jet.

For a jet element of length dx and thickness 52, the momentum equation is

(9-8-1)
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or

i da '

d
pw' dy = -- _w" (9-8-2)

Assuming that the frictional forces at the outer edge of the wall boundary layer are
equal to zero {with y = 51, _w/0x = 0 and T =0), we can write for the contour 1-2-3-4:

/293

•_- _At_dy--t- *-d--_-_ pwdy=O.
o

(9-8-3)

Here w 0 is the velocity at the outer edge of the wall boundary layer (with y = 51).

Hence, taking (9-8-3) into account, Eq. (9-8-2) takes the form

w, _ o pwdy -- pu,; dy
-- ":w- (9-8-4)

We introduce the characteristic thicknesses for the wall boundary layer

= l (1 -- ptw,]PW_ dy -- displacement thickness;

I,

_-- P_ 1 -- _-P-_e dy- momentum loss thickness.

Then Eq. {9-8-4) reduces to

__ _. de,, ',:
dr (9-8-5)

or

where

Re** -- _,o,_**/Vo; z ----x/s; mo -- _°'m,;

¢h/2 = Re, =,,,,s/v..

We must now turn our attention to the circumstance that the parameter cl-_0/cl_,

under the conditions adopted, is not related to the pressure gradient, which is essen-
tially zero in a subsonic submerged jet.

With a power-law distribution of veloci_ in the wall boundary layer we have

(n = 1/7):

8* a ]l+a'" a" =corot-----8. (9-8-7)
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The law of friction for theboundarylayer takesthe usual form

ch B

2 =_ (Re")-"

Then

(9-8-8)

/294

dRe** Re** dw, B
(9-8-9)

Since 61 << 62 we can assume that the change in maximum velocity over the length
of the plate is the same as that for a free turbulent jet [1]:

= C,x"= 3,8x-'.'. (9-8-10)

Integrating, we find

For x 0

Re'* ___ {l_e 7

B (_ + 1) ResC,_ t 4._

"_" 2[_c,(m+ i)+_+ II

0 we have

,..,,(÷)c.,..,
I

[, +..
(9-8-11)

r B(m -I- I__)Re.C,__+. I 1 _'_TRe**
= [2_C, (m -f- 1) -t-- ,, -t- 1 J

(9-8-12)

Taking B/2 = 0.0128, m = 0.25, C 2 = 3.8, C 1 = -8, (_ = 0.5, we obtain

¢h 0.0315

2 -- ReO.2_.,.
(9-8-13)

or

0,0825 clm O. 457 __ '_w
a'It ".' ' 2 -- -_o 2_,, ---_2

1._..) K%'-' p._'.

(9-8-14)

Figure 9.26 gives a comparison between the tests of Myers et al [185] and the
derived formulas. Figure 9.27 shows the same comparison for the test data of Seban

and Back [216]. As is evident from the diagrams, the proposed formulas for the

dynamic layer of a wall jet are in satisfactory agreement with the test results. Using
Reynold's analogy we find the heat-transfer formula:

s 0,12

Sty= Nw_/:./, 0 "_" _ #-z,,_e°'2--.,Pt*.* (9-8-15)

or

,,- o., o (9-8-16)

where a = qw/(Tw--T*w).
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FIG. 9.26. Coefficient of friction in the

wall jet. Computed from (9-3-14): 1-

Re =6 x104; 2--Re =7 ×103 . Points
s s

from the tests of Myers et al [185].
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FIG. 9.27. Coefficient of friction in the

wall jet. Computed from (9-3-13): 1-

Re = 3500; 2--Re = 7000. Points from
s s

the tests of Seban and Back [216].
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FIG. 9.28. Heat transfer in a wall jet.

1--calculated from (9-8-15) (Ws/W0

co); 2--calculated from the formula
0.113

of E. P. Volchkov [15] : st,= Reo.__o.,_prO. _

_./_, >3); 3--calculated from the formula
St. = 0.0288 Re_ "0._ Pr--O.+_(uv_lev. = I }; _, 0 , !-I --

tests of Seban and Back [216],

Here T is the equilibrium wall temperature, which to a first approximation can be
w

taken equal to the temperature on the axis of a free turbulent jet.

In Fig. 9.28 the test data of Seban and Back [216] are compared with formula
(9-8-15). As evident from the diagrams, beginning with x/s = 4 the agreement between
theory and experiment is satisfactory.

E. P. Volchkov and P. V. Nikitin have extended this method of computation of the

turbulent wall jet to the more complex conditions of the propagation of the jet over a
burning graphite surface.

Figure 9.29 is a diagram of this problem with chemical erosion at the wall a

transverse flow of matter Jw = PwWw is created.
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FIG. 9.29. Diagram of wall

jet on a permeable surface.

Integrating the equation of motion of the boundary layer along the y-axis from

y = 0 to y = 61, with boundary conditions

y--O;, .c=%,; w==O; _u_/w; ?(,
y=S,; ._---0; w,=Wo= f(x) / (9-8-17)

and taking into account the equation of continuity, we have

_* (.q_ 1 _[_ o,.a" _.lRe*Sd_o._. de-- c"(l'+'b')Re=_°'2 (9-8-18)

where b=-- i_.__w2 is the wall permeability parameter; Re _'-- Po_o_'_/_,; Re,-_ p,W,S/FL,.
!poWoct_

We take the law of friction in the wall boundary layer in the form

c_, B_- _-2" Re "*-'_(-_-)" _'. (9-8-19)

For subsonic speeds, in the region Ct > 1, we have

' [ v ' f l'_'_ a, (_,--1) arctg (q,,-- 1) (! + b,)--arctg , (9-8-20)

where Ct = iw/i0; i and i 0 are the total enthalpies of the gas at the wall and at the outerw

boundary of the wall layer.

If the interaction processes between gas and wall material take place in the diffu-

sion region, the permeability parameter bl, as shown in Chapter 8, can be expressed
in terms of the reduced weight concentrations of the chemical elements entering into the
reaction ( see 8-5-13). For example, for the interaction of air and carbon in the diffu-

sion regime (with T w > 1500 ° K), b 1 = 0.173.

It was shown earlier that for isothermal conditions the shape parameter c I = 8.

Let us estimate the influence of non-isothermicity and the lateral flux of matter on

the shape parameter c 1.

Assuming = = },/7and taking into account the relationship between density and

velocity (for M >> 1)
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----_=_+ (I--)) w, (9-8-21)
P

from the formulas for 6*/61 and 6"*/61, we have

=I--7 0._--_) o In)+
(--1)'¢"

.(7. _) (! -- ¢)'+' ;
(9-8-22)

a.* [ In_ + ¢'-_-= 7 ¢'0 - 41, (t- 41°

6

+_. (- o',"17-- _)'.(8 -- _) (1 -- _)'+'
,----0

(9-8-23)

c,
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/
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f
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! g $
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Fig. 9.30 Fig. 9.31

FIG. 9.30. Influence of non-isothermicity on the mag-

nitude of the shape parameter c 1. Curve calculated
from (9-8-22) and (9-8-23).

FIG. 9.31. Effect of injection on the shape parameter

c 1. Curve calculated from formulas (9-8-25) and
(9-8-26).

To estimate the effect of the transverse flow of matter on the shape parameter %,
we make use of the limiting distributions of velocities, which, for the case p = const,
take the form (see 5-2-3):

b
l= (l _ T) mojr. b ®z

(9-8-24)

Taking m.=} 'n we obtain

a" I [,/ b 1 :

"" ' rv 'X-=T\ ," -_, (,_ +b)

+ ¢ 5 280"

(9-8-25)

(9-8-26)
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Figures 9.30 and 9.31 show the dependence of the parameter c 1 on non-isotherm-
icity (with b = 0) and on the injection (with _b= D.

As seen from the plots, the non-isothermicity- and injection-effects on the shape

parameter c 1 are quite prominent.

The integral of (9-8-18) is

l_e,_= _-¢, (mnt_i)Re__"_' (_'+:)+:(lnt-b,)
• o! •

4
!

]-j_w_m 4j_c= I+m m+l

X_F(-_,j d_+(Re u.)_. .

(9-8-27)
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With the conditions bt = const and • = const, and taking (9-8-10) into account, we
have for the region x >> x0:

I

Re"'= {B(m+ I)Re.(l-+b,)c:=+'_ (_. _"l _--_-_[_,(,,,+:)+=+,i \-_.) f "
(9-8-28)

Making use of the law of friction (9-8-19) and the Reynolds analogy in the form

St, -_-_-¢_'Pr-'.', (9-8-29)

we obtain a formula for computing heat-transfer:

m

ist .

C)St.= I¢_[=c,(m+ l)+ =+ t]m+'
-_- (9-8-30)

• ]
In practical computations it is more convenient to use the number

St=--_ tw=--St, Wo= c=St,x'.
hwao't

(9-8-31)

In the paper by E. P. Volchkov and P. V. Nikitin [15] tests were made in a cylin-
drical graphite duct with induction heating. A nozzle at the duct input provided an air
s c reen.

The mass-flow of matter at the wall was determined from the intensity of burning
of the duct. Preliminary calibration tests showed that in the regimes studied c 2 = 3.6
and _ = -0.45. In addition, the permeability parameter b =b t _was less than 0.1 in
the tests, and its effect on the law of heat-transfer and on the shape parameter c 1
could be neglected. The non-isothermicity factor was the major influence on these
parameters; the non-isothermicity was about _I,= 8.5 in the tests.
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FIG. 9.32. Burning of a graphite duct in an air wall

jet. 1, 2, 3--calculated from (9-8-33) for slot veloc-
ities of 114, 66 and 26.7 m/sea, respectively.
Points from the tests of P. V. Ni_tin.

[we. m/sea 114 59.6 72 27,4 26

T W *K (-_--" 1928 II-_ 1988 1997 19,59

FIG. 9.33. Mass transfer in a wall jet (burning

graphite duct). 1--Calculated from (9-8-32) for
_I_= 1; 2--calculated from (9-8-32) for ,l' = 8.5.
Points from the tests by E. P. Volchkov et al.

s bols oi 1 oLol x

244



In this case we have from Fig. 9.30 that c 1 = -11. Then Eq. (9-8-31) reduces to

or

Iw-- _.-_,._pr,._ k _, / " (9-8-33)

A comparison of the calculations of burning intensity of the graphite duct along the
length with various injection intensities from (9-8-33) with the tests of E. P. Volchkov
and P. V. Nikitin is given in Fig. 9.32. As seen from the plot, there is satisfactory
agreement between calculation and experiment.

Figure 9.33 provides a check of formulas (9-8-32) (for @= 8.5). But here, for
comparison, the curve is calculated for isothermal conditions (_ = 1). We see that in
this case non-isothermicity has a significant effect on mass-transfer, reducing it by a
factor of more than two.

245



APPENDIX

A. 1. SUMMARY OF THE PRINCIPAL COMPUTATIONAL FORMULAS

Flow Past an Impermeable Plate

Standard Conditions

Frictional drag law for isothermal flow:

2
C_,= (2,5IllRe**-}-3,8)'

Heat-transfer law:

A. 1.1.

Mass-transfer law:

St,=
2 L_T - O.TII

(2.51. Rer* + 3,8)'

Sc - e,T|

Stao ----
(2,5 I, Re_ + 3.8):

Using a power-law approximation:

Of,=.. B Re**-m;

B
Ste=' -_" Pr - '."Re** -m;

B
St_ = -_- Sc - ',"Re_ -_" .

where the coefficients B and m are taken from table 1.

For Re** < 104 , m = 0.25 and B = 0. 0256.

For 104 < Re** < 4. 105 , m= 0.182 and B= 0.0148.

The local coefficients of friction, heat- and mass transfer:

ct, : 2 Sts p[s,ls _= 2 Sto0 Scs,Ts

--0,0676 Re_-'°'2 ( for Re, < I0');

el, ==0,030_ Rel-'-O'lS_(for IO' _ Re=_ IO°).

The mean coefficients of friction, heat- and mass transfer:

Et, _ 0,072 Re_--0'2 (for Res < 10T);

El, -- 0,0363 Re=-''°''_ (.for I0' < Re,,< 10');

Et, -- 2S-"t,Pr*.T*= 25"tDoSc*.'*.

(A-Z)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-S)

(A-9)

(A-10)

/30___£2.

/303
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Distribution of velocity, temperature and concentration:

O.= ! -1.-"_" S_,ln_r;

Effect of Nonisothermicity and Compressibility

Limit Relative Frictional Drag Laws

1. Subsonic velocities:

o. IR,"w (V-_-+ l)"

or

.

when a} # O,

Supersonic velocities:

( )'
.,c,,M.1/:_+')'Mo V k--Ir----fi-

e

V_ ----"_--'-i arcsln V4(_*--I) (_*+._,) + (A_)'

A_ ]1.--arcsln If4 (_'--I)(_" + -_) +(_4)'

Approximation Formulas

In the general case

"-- _ ,)M.V'-'

For the case r = 0.9, k = 1.4 we have

--- ,.(_.,)

(A-f1)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)
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or

_-=tTL%_,)'! I f Tw .I/2 +l]J -{- 0,03 M o2./ -' "
(A-20)

For the power-law approximation of the frictional-drag law under standard condi-
tions we have

I

($1/_t*) a,' -- _¢-_-.J Re. _® ' (A-21)

--02 8
ct==0.0576Re,w, iY°_ (.for Re. _ 10');

- -0,1_...o,846 ( for 10 7 <_ Re. _ I0'),¢t == 0,0308 Kesw ,_

(A-22)

where
PoWo-_ .

Remw= Pw '

¢t :'= 2 St Dr'. _s = 2 St D Sc'J s.

Limit Velocity Distributions

1. Subsonic velocities:

.- V ,,.]; (A-23)

H =,._H,. (A-24)

2. Supersonic velocities:

2(¢*-- i) w+a¢
atcsin Jf4't' (_* --I) -{- (5_)'

a+ (A-25)

When A¢= o

_y'÷" (A-26)

Hm H, (I .67_" -- 0.67).

Effect of Gas Dissociation ("Frozen" Boundary Layer)

(A-27)

Limit frictional-drag law:

where
Vss == W, _MW.,.

) ic,M
(A-28)

248



Limit velocity distribution (subsonicvelocities, ¢ = 1):

. - g'_-" w, w, 2

for the case _w 0, _ 0 1:

o- (0,17_+0,83) e).;

for the caSe_w 1;_0 =0:

o-_(I,17--0,17_0).

Thermal Boundary Layer on a Curvilinear Impermeable Surface

Reynolds Number over the Energy Loss Thickness

i. Two-dimensional boundary layer:

\ P.. J
!

I / I÷a

-u,_'=T_4+"_+ (R_o_)_÷_f .
.j

2. Axisymmetric boundary layer is a nozzle:

±f'+" i
|

i-7
X_-'_i_ +" d_+ (R_oo_.g)'+_

- i-._] "

For the subsonic region:

I II -I- m

\ P. I _"_T'+md_

(A-29)

(A-30)

(A-31)

(A-32)

(A-33)

(A- 34)

/30 5
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For anaxisymmetric boundarylayer:

1 {2Pr-_BRe.,oI_y f_'w\m- , mR,;'= ArD _ k-_-.) _._r÷
4

I

m÷i

X D,+,,_. + (Re_"_TD)__-•=., j

Local values of the Stanton number:

8 { ,_,_y,,.
Stz = V® 2 Pr,, (Re_.'oo)-,_ P** J

Local heat fluxes:

qwz = Stzpewe_iz-

Flow Past a Plate with T = const
W

The turbulent boundary layer increases from the leading edge of the plate:

St z ='0,0288 (Too)'.' Resw Pr *.'

For flow over a blunt-nosed body (w0 = e_):

B
St=- 2Pr-

For cross flow over a plate

I

- " m+l

sm

[! + m c 3m+,
L2--_- a T :" R_.,w]

(c = 1, m = 0.25, B = 0.0256, n = 0.75):

St -- 0,0375_°_ e Re_2_ -*.* Pr -*,*.

For a given thermal stress distribution:

st,=k_--_) t_..) k "= ow:

For the case qw = const

St., = o.o28s (_,=)... Re,-_.-_pr-....

(A- 35)

(A- 36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-4t)

(A-42)
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Platewith an initial heat-insulatedsection:

0.0288 -- ._,--_._.. (_)'"' _4_)
For a diffusion boundary layer it is necessary to replace Ai by Ac, Pr by Sc and

St by St D in Eqs. (A-32)-(A-43).

A. 1.2. Flow Past a Permeable Plate

Isothermal Homogeneous Boundary Layer

The limit relative frictional-drag law:

The limit velocity distribution:

Taking _, = ¢,- we have

,._ (,__,,).: (A-44)
b rit _ 4. (A-45)

( _)• , = !---_- w, + T _; (A-46)

_crit= _. (A- 47)

,(_,+z+_-)
_ocrit (n-Jr- l) (2n + l) '

(A-48)

- _ • (A-49)
_v" 2n+! '

*_**_, (i b I I (A-50)

¢( ÷)' ,,,.--2 1-- 3n+l 16 4n+! '

2n (A-51)
_"_ crlt :_ (2n + l)(4n + I) |

|*,e n(2n+ I ++)

b / b _(n+l)(2n+l) bt (n-_l)(2n+l) '

-2T('-T) 3.+, . ,6 4.+,

o_ n+ 4,.

(A-52)

(A- 53)
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Uniform gas injection (Jw= const):

(I--0.25b)I .
cJ"'O'O576Rex-"0'2 (1 -f-O,25b)*.= '

21w b
be=" bwecl, "=--(1-.t--0.25b)'.' ;

bxcri t co=- 3.5.

Constant permeability parameter (b = const):

(I --0.25b)' .
ct"O'O576Rez-"°'_ (1 --I.-0,25b)'.* '

b
#=== (l + o.25#),., ;

bxcri t co== 3,5.

Limit gas suction:

=g. =,--- b,,;

ct
iw----T-.

Allowance for a finite Reynolds number:

V_,- (! -- b =bcri-:_) ;

0.83
bcrit _.bcrit co( I "_"{Reg."J"

Turbulent Boundary Layer of Variable Density on a Permeable Plate

(Subsonic Velocities)

Limit Relative Laws of Frictional Drag, Heat- and Mass Transfer

1. ÷,<h

4 [ v'(=-,,)(, +b,)t+ ¢_,]'_'-_ _" _-÷,¥V,-_, J ;

_j__lf ,+v'_-_-_, )'.bcritco_ I--_L\ lit l--J/'l--_'_t

. ÷,> h

-== I/(;_ ,)(,+

(A-54)

(A-55)

(A-56)

(A-57)

(A-58)

(A-59)

(A-60)

(A-61)

(A-62)

(A-63)

(A-64)

(A-65)

(A-66)
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bcritco--@,2-1arccos_, j

Approximation formulas:

I I: I 1 -tw®_ 1--L'/24V' +0 +b,) ''2 +-g-b,(_,-- n ]

4

bcrit co _'_ i 2 '

-T + T _'

where _1 = P 0/P w"

(A-67)

(A-68)

(A-69)

Boundary Layer },

Homogeneous

non-isothermal .....

Inhomogeneous

isothermal .......

Nonisothermal;

mixtures of gases

of like latency .....

rw

T,

b!

t+ _ (_ -- s)

iw [I b,-_-=¢ + T_-g (_- _)]

crit col

where

2 11"== (V_¥ 1

Limiting velocity distributions:

for ¢1 < 1

u= a(2g+,0 '

where

for ¢1 > 1:

a = 0 -- _,) b. d -- (I - _,) _® + ¢,s; ¢ = ¢_=;

[ ' 1 e_;.'-''- 'K= ga(a+d+c) +a+"_-,/ "-_-d;

,,_t=r _,¥:_=,-'_

/,7_- l _ (l - =.).
m srctg j/(_' - I)(1 -{- b')

(A-70)

(A-71)

(A-72)
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For the case of critical injection:

_l<t
V _,+0-_,)=+Vh-_,)=

= [l-+ Vl -"-:_, ]. 2=

_1> !

Shape parameter H:

V (_,--l) w ==arctgl/'_--_--[_ !trctg _=-I-0 --_,)w

--_" _crlt oo(i --w,).

•H=, H,_, (I -{- O,OSb).

Supersonic Gas Flow along a Permeable Surface (Homogeneous Gas)

In this case

q'® =" vWm(i -- _c_t =1',

where

bcrit ¢

bcrit _o==bx_ _M;

is defined by formulas (A-65), (A-67).

Injection of a Homogeneous Gas of Like Valency (R = C)

In this case

(A-73)

(A-74)

(A-75)

(A-76)

(A-77)

]___[ I b.,I,.)V, ]V.=_I, 4 _'/= +_b.i+o, _-0+

'l 4.__[4 ,+,b, -,+_- (,'--I) ,+., --,']}

4

bcrit oo _+_ 2 "• + _-/_

Turbulent Boundary Layer of Dissociated Gas on a Permeable Surface

In this case

-- #cr----it)"

(A-78)

(A-79)

(A-80)
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where

bcrit co

_=0

ls k-- I -=

[atctg M, V r_

+_ J

);v.= +l

3

bcrit_ -_bcritco 1-t-2_ '

I----o

is defined by formula (A-79).

When the boundary conditions are similar, the triple analogy holds:

ly_= _Fs_= _.

Formula for the thermal permeability parameter:

Kbicrit fV4¥t_YM )b, = _,.,- 2+,+_ k _-_77t__it+' -' '

where
iw_ i _

(A-S1)

(A-82)

(A-S3)

Turbulent Gas Boundary Layer on a Permeable Surface of Weak Curvature

For the case b = const (T w = const) (subsonic velocities):

BRe+ W (_-[- b) _'lO+(l +m)'* d2

0

For an axisymmetric boundary layer:

¢t m -- o

[,+m "

The coefficients m and B are taken from Table 1.1;

x- I+ H= I+ HoC, (! + 0.05b).

(A-84)

(A-85)

/31_____2
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For critical injection:

[ I ÷ _ ¢
Re" w 2 B l_eowbctit

[_ o J

_bip

/w crit = p,_e, 2 (Re'*cx)m

Integral of the energ_¢ equation for a plane boundary layer:

t { 'I+m
Re'*t = -hl' 2 1_°_ BReoo U (1 -- U') _-l b, (I

[
/'I+m

For the subsonic region with Tw = const and T' = const (Re** T

Mass flow of injected gas:

/w _ P,m, St, bt,

where

St,== 2 (Re**tw) m ; Re**,w= Re*', _ •

For subsonic velocities and T = const:
w

B
-_-b r

iw-- PoWo

[ i "- !_=r

In the neighborhood of the bow point (_0 = c_) :

Jow==

!
B

= 0 at_ = 0):

(A-86)

(A-87)

(A-88)

(A-89)

(A-90)

(A-91)

(A-92)
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Chemicalreactions on the surface of a body:

b,,= {_ }'_ (c_t)w. (A- 93)

Gas enthalpy at a thermally insulated wall:

iw _ i. + b,,i°, ... (A- 94)

Integral of the energy equation ( subsonic velocities, i = const) for a plane bound-
ary layer, w

_ ,0 fl+m _ l--_V
Ke Iw 2Pr" _l"_(l_b_,)Re,w ac,dx , (A-95)

for a nozzle:

Re°*,wffi_-| _--_ _v,..(l+b,,)Re, (_-*.,,di

L • .,

(A-96)

where

46

Re.-- XL_wDcri-t

The intensity of burnup of the material:

B
]w fir hrreb,,_ 2l_r-(Re*'iw] _-" (A-97)

A. 1.3. Influence of a Longitudinal Pressure Gradient

The limit critical parameters in the turbulent boundary layer separation section
(constant density) are

t L;o.,o.
Frictional drag law in the diffusion region:

% = [!- Y'7(2 - ])]. (A- 98)

Influence of non-isothermicity and compressibility on the critical parameters:

1. Subsonic velocities:

(A-99)
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2. Supersonic velocities:

( +_i- f)crit ,=+_--t[arcsin'l- 2 (¢*-- I) + M,

t+,L_ v,<+._,,+.+++>+<++>,
A+ ] s"-- .csln I/+ (_* -- i)(+* + a+) + (a+),

Approximation formulas :

(A.IO0)

('_'*l)crit l I h--'l }-1(+,)o+-{T,+...+.,,.++,_-:• (A-101)

For the subsonic velocity region:

with $ < 1

with $ > 1

fcrit __--__,,,;
Hcrit -_ Hcrit0+; _-_t0

Hcrit I, 32 _crit I

/TcmO -I + H-_c_tO(+- I); 7_mo --V"

For the supersonic velocity region:

with AS < 0:

with A$ = O:

Hcrit n 2,41_,* + 1,385_ -- 0,52;

'c_tO *

(A-102)

(A-103)

(A-104)

(A-105)

Dynamic Boundary Layer on a Curvilinear Surface

Integral of the momentum equation:

# F i

( )_ = I'(,,,,+.)®Re*oN I" exp ' I + m (m + I) _- Re.,

- I

_ (1 --UiJ ll-I exp(Jid2 j '

(A-106)

/31__.__55
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where

i du_.I =- (m -l- I) (| + Hcrit) w"-_"-

Local friction coefficient:

8 f ,.,,,,V..
¢t= t,**Im_%® (r_....)-----_;:*.--V)"

Boundary-layer shape parameter:

f_

Re * *eo

Re.oU 2 (1 --U') ,-I

dU
d,g

For subsonic velocities (T w = const):

BReowq_t_ w_ +{l+m)z d_ . ,

° j

where >t = 1 + Hcrit.

Local friction coefficient:

O = _t®_J B (Re"w) -'_;

Re**w d_,

I--'-- Re,ow_, a_"

Area of a plane subsonic diffusor with pre-separation friction:

p=[i 0.o3_7 ],ls.Jz+ _ (_- _,)

For the case of intense wall cooling (_b --- 0, Hcrit -* 0):

T= + _ (_-- _,) •

A. 1.4. Joint Influence of a Longitudinal Pressure Gradient and Gas Injection

Limit frictional-drag law (constant shape parameters):

where

" --'T') I1- V] t2--1)l,W (I b '

1 = f/fcrit;

lcrit =_ 4 r f } _1'.r':'. _ .-.'D-/ arc¢°s/h_-T-:..^/
IcrluJ L _- _rzu_/ j

(A-107)

(A-108)

(A-109)

(A-112)

(A-113)

(A-114)

(A-115)
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A. 1.5. TurbulentBoundaryLayer in the Initial Sectionof a Cylindrical Ductwith
ImpermeableWalls (SubsonicVelocities Tw = const)

Length of the initial section:

_init _0,8+ 4- 0,55

ReO.25 +o.,17 '
(A-116)

where

Re0=4G,'=D_,o.

Velocity in the potential flow core (m = 0.25, B = 0. 0256):

[
l(l + 1,3+) 1,25+4- lJ 14 (+.--t)o. 's

I.

I (e.-- t)..5 +1, '/_-2(_° -- l)°.-_' 4- t

--_-_- l, (,L - t)., - g_-(_. - i)o,,, + I

g_(_o-- t)..,+ ] (_.- I),.',--I/'2",arctg i-_-- I)°. + " -- (L -_- 1,3._,) _0
J

O,4+'.=s.-_'

(g_'+ I)' _eow_0,2:, •
(A-117)

Reynolds number over the momentum loss thickness:

Reow(+. -- I)
Re**w =- 5,2+

(A-118)

Local friction coefficient:

0,0256
ct = =go=(Re-.w)O.== "

(A-119)

Reynolds number over the energy loss thickness:

Re_,w ,,,= Reo¢_.(_0- 1) { 1.25+ 1,62+5,2+ (2,3+ 1.3_) (_,__ l)j.=s

X [ 4 (u_.-- l)*. 2s- _2-arctg J/'2"(_o-- I) °''sI -- (_,-- I)O.s

I (_,-- l)°,s+V".5-(£,°-.- l)°,:s-f - l 1°'_
--_i. -----¢ +-------,)..,--_¥,]j.(+.-- t)..+- ._r(- _

(A-120)

Local values of the Stanton number:

0.0128

St= _= (Re_wl..==p_..,_
(A-121)
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A. 1.6.

where

or

where

A. 1.7.

Friction and Heat Transfer in a Stabilized Gas Flow in a Pipe

Coefficient of friction and heat-transfer:

- et

I

NU O,023Re *.a Rr * ,._-o J,

Nu ----d)/X; Re = _O,'_; _ ----r_,/7.

Effectiveness of Gas Screens

Initial Cooled Section

I. Plate:

2. Curvilinear surface:

I*

.__(, ..

I Rl+m

• _max

ez= ] i+ o_+_

I
• I

{v, {_w_=&,1,_ v,)._--rOr+rod2
. ®_*_** J "

X "It|

[i ""• _ ._w '_U -- U-')i_'i-dej

I

m÷l

Injection of a Cooled Gas Through a Porous Section

Flow past a plate; subsonic velocities:

0,25 Reax ] **• =- i + Re,;,_ (I + K,)'."

(A-122)

(A-123)

(A-124)

(A-125)

(A-126)
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2. Flow past a curvilinear surface:

!+

O'25ReetU_n _ . _M U (! --U')'g'_-i-d,£

3. Gas flow in a supersonic nozzle:

0'25 l_eoo tlst' _ tlsM(D)m-ldS;

Xl

e: ,- I + 11+ K_)'." _,l.2s (D)':"
,x_wl

Injection of a Cooling Gas Through a Slot

1. Flow past a plate; subsonic velocities:

[ ]-'@= IJrO.24Re-'. "s w.(x--.x_) o.
wzS

2. Supersonic flow past a curvilinear surface:

[ 1
O=- 1 -I- Re_ s

3. Gas flow in a supersonic nozzle:

i -'
oo,6_,.,_,,:_1 '_',"

• . . \-_-,/ Re,, ; ''

• -," 1 + (Re.,,)'." (/-J)_." WM (D)m -' d_ "J

Heat Transfer in the Presence of a Gas Screen

In this ease

B
St.- _- Re_'-" Pr-"

where

= , J(.+t_B
Re"r [e- r.--------7_jr/-- rwll [ _-_-':'-'- "%'_ [°_,

- ,-r;'--_%._j _._ + (_7)_=;'i ;

(A-127)

(A-128)

(A-129)

(A-130)

(A-131)

(A-132)

(A-133)
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- ¢w -- Shp'=. (r. -- rw_)[e - r.r'-- r_rw]. (A-134)

Effectiveness of a Gas Screen and Heat Transfer on a Chemically
Reacting Surface with Tangential Injection of Inert Gas

into the Boundary Layer

Limit heat-transfer laws:

for ¢1 < 1:

M'_ r. 4 [ V(l--4,)(l+b',)+Vg_,]'.• =. _ r'w b., 0 - _,) In Vl---"_-_,+ V_'-_, '

M'w r. , [ ,+v',---:_,,1'.

for _ > 1:

Mw r. 4[ _/z¢_,-l)0+b-,)V_''_-'_" w b*,(_,--I) arctg b*,

bcrltm'_" r" w _," 1 arccos

For an impermeable wall:

M__.*._"_.r. f 2 '_!
w,- M. r'w _,_/"

Burn-up of surface in the presence of a screen:

iw ==b°,_ T Re_-" Sc p,=.,.

where

[ " ]t

Turbulent Wall Jet (Ws/W 0 >> 1)

Local friction coefficient:

O. 0825
D

¢_ = -(Re=)*,'

(A-135)

(A-136)

(A-137)

(A-138)

(A-139)

(A-140)

(A-141)

(A-142)
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Local Stanton number:

0.12Rife.= f _---_w' )*'tan % Po ,

0 21 Qpro.o 'St : p,w, tp ° Re.' z •
(A-143)

where _ = T qw_T* and T*w is the temperature on the axis of the free turbulent jet.
w w

Burn-up of the surface in the turbulent wall jet:

0.12b.p,a',W °,' [ Pw _=.2
i., = ,.._'ReO.2pr... X-L-, J "

(A-144)

A. 2. RELATIVE LIMIT LAW OF FRICTIONAL DRAG ON A PERMEABLE PLATE

IN A COMPRESSIBLE GAS FLOW [Calculations by (5-4-2)]

Air-air

/321.

b|

' o Io., I o., I o., I ' I = , I

0,05
0.1
0.5

i
3
5

10
15
20

0,05
0,1
0,5

I
3
5

10
15
20

2,6610
2, '2-_J0
l. 3_50
I, 0(YJ0
0.5310
0.3779
0.2277
0. 1657
0. 1312

2,4670
2,1524
1.3115
0,9648
0.5227
0,3736
0,2251
0,1649
0,1306

2.5620
2.2090
1,3040
0.9267
0._139
0.35_0
0.21S3
0.1565
0.1238

2,3744
2,0680
1,2533
0.9105
0,4961
0,3540
0,2138
0,15fi7
0,1233

2.3910
2.0550
1.2010
0.867_
0.4r_6
0.3248
0.1946
0.1412
0.1116

2.2150
1,9230
!,1544
0,8429
0.4515
0,3211
0,1933
0,1405
0, Ill1

2,1260 I 1,9720
1,8170 1.6800
1,0450 0,9562
0,7492 0,6824
0,3914 0,3541

0.2750 I 0.248!10, J044 0.1478

0,1190 I 0,1C6_0,t_J38 0,0842

1.9683 1.8251
1.6997 1.5707
i.0042 0.91_9
0.7277 0.6529
0.3853 0,3486
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